Skip to main content

Thermal Actuators

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 347 Accesses

Synonyms

Electrothermal actuators; Electrothermomechanical actuators; Heatuators; Thermomechanical actuators

Definition

Thermal actuators are mechanical systems that use the thermally induced expansion and contraction of materials as a mechanism for the creation of motion. These devices are compliant structures, using elastic deformation and mechanical constraints, that frequently are designed to amplify the motion generated by thermal expansion or contraction. Temperature changes that result in thermal actuation are most commonly provided by environmental changes or by Joule heating from electrical current flow. In the context of nanotechnology, thermal actuators refer to microscale and nanoscale devices used to mechanically interact with nanoscale structures, with motion generated by the thermally induced expansion and contraction of materials.

Key Principles, Concepts, and Phenomena

Thermal actuators are useful for applications where low voltage, small footprint, and high force...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lu, S., Dikin, D.A., Zhang, S., Fisher, F.T., Lee, J., Ruoff, R.S.: Realization of nanoscale resolution with a micromachined thermally-actuated testing stage. Rev. Sci. Instrum. 75, 2154–2162 (2004)

    Article  Google Scholar 

  2. Howell, L.L.: Compliant Mechanisms. Wiley, New York (2001)

    Google Scholar 

  3. Que, L., Park, J.-S., Gianchandani, Y.: Bent-beam electrothermal actuators – part I. Single beam and cascaded devices. J. Microelectromech. Syst. 10, 247–254 (2001)

    Article  Google Scholar 

  4. Zhu, Y., Corigliano, A., Espinosa, H.D.: A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J. Micromech. Microeng. 16, 242–253 (2006)

    Article  Google Scholar 

  5. Brown, J.J., Suk, J.W., Singh, G., Baca, A.I., Dikin, D.A., Ruoff, R.S., Bright, V.M.: Microsystem for nanofiber electromechanical measurements. Sensors Actuators A Phys. 155, 1–7 (2009)

    Article  Google Scholar 

  6. Gianchandani, Y.B., Najafi, K.: Bent-beam strain sensors. J. Microelectromech. Syst. 5, 52–58 (1996)

    Article  Google Scholar 

  7. Lee, S.-W., Hierold, C.: Electrical and thermal insulation via an oxidized, rough contact interface for the electro-thermal actuation of carbon nanotubes. Sensors Actuators A Phys. 210, 10–17 (2014)

    Article  Google Scholar 

  8. Qin, Q., Zhu, Y.: Temperature control in thermal microactuators with applications to in-situ nanomechanical testing. Appl. Phys. Lett. 102, 013101 (2013)

    Article  Google Scholar 

  9. Alamin Dow, A.B.., Jazizadeh, B., Kherani, N.P., Rangelow, I.: Development and modeling of an electrothermally MEMS microactuator with an integrated microgripper. J. Micromech. Microeng. 21, 125026 (2011)

    Article  Google Scholar 

  10. Kim, D.H., Park, Y.C., Park, S.: Design and fabrication of twisting-type thermal actuation mechanism for micromirrors. Sensors Actuators A Phys. 159, 79–87 (2010)

    Article  Google Scholar 

  11. Erdem, E.Y., Chen, Y.-M., Mohebbi, M., Suh, J.W., Kovacs, G.T.A., Darling, R.B., Böhringer, K.F.: Thermally actuated omnidirectional walking microrobot. J. Microelectromech. Syst. 19, 433–442 (2010)

    Article  Google Scholar 

  12. Fung, Y.C., Tong, P.: Classical and Computational Solid Mechanics. Advanced Series in Engineering, vol. 1. World Scientific Publishing Co. Pte. Ltd, Singapore (2001)

    Google Scholar 

  13. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)

    Google Scholar 

  14. Mills, A.F.: Heat Transfer, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  15. Lott, C.D., McLain, T.W., Harb, J.N., Howell, L.L.: Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator. Sensors Actuators A Phys. 101, 239–250 (2002)

    Article  Google Scholar 

  16. Geisberger, A.A., Sarkar, N.: Techniques in MEMS microthermal actuators and their applications. In: Leondes, C.T. (ed.) MEMS/NEMS Handbook: Techniques and Applications. Sensors and Actuators, vol. 4, pp. 201–261. Springer, New York (2006)

    Google Scholar 

  17. Huang, Q.-A., Lee, N.K.S.: Analysis and design of polysilicon thermal flexure actuator. J. Micromech. Microeng. 9, 64–70 (1999)

    Article  Google Scholar 

  18. Craig Jr., R.R.: Mechanics of Materials, 2nd edn. Wiley, Hoboken (2000)

    Google Scholar 

  19. Lobontiu, N., Garcia, E.: Mechanics of Microelectromechanical Systems. Kluwer, New York (2005)

    Google Scholar 

  20. Wittwer, J.W., Baker, M.S., Howell, L.L.: Simulation, measurement, and asymmetric buckling of thermal microactuators. Sensors Actuators A Phys. 128, 395–401 (2006)

    Article  Google Scholar 

  21. Kwan, A.M.H., Song, S., Lu, X., Lu, L., Teh, Y.-K., Teh, Y.-F., Chong, E.W.C., Gao, Y., Hau, W., Zeng, F., Wong, M., Huang, C., Taniyama, A., Makino, Y., Nishino, S., Tsuchiya, T., Tabata, O.: Improved designs for an electrothermal in-plane microactuator. J. Microelectromech. Syst. 21, 586–595 (2012)

    Article  Google Scholar 

  22. Hazra, S.S., Baker, M.S., Beuth, J.S., de Boer, M.P.: Compact on-chip microtensile tester with prehensile grip mechanism. J. Microelectromech. Syst. 20, 1043–1053 (2011)

    Article  Google Scholar 

  23. Sahu, B., Taylor, C.R., Leang, K.K.: Emerging challenges of microactuators for nanoscale positioning, assembly, and manipulation. J. Manuf. Sci. Eng. 132, 030917 (2010)

    Article  Google Scholar 

  24. Brown, J.J., Dikin, D.A., Ruoff, R.S., Bright, V.M.: Interchangeable stage and probe mechanisms for microscale universal mechanical tester. J. Microelectromech. Syst. 21, 458–466 (2012)

    Article  Google Scholar 

  25. Arthur, C., Ellerington, N., Hubbard, T., Kujath, M.: MEMS earthworm: a thermally actuated peristaltic linear micromotor. J. Micromech. Microeng. 21, 035022 (2011)

    Article  Google Scholar 

  26. Ouyang, J., Zhu, Y.: Z-shaped MEMS thermal actuators: piezoresistive self-sensing and preliminary results for feedback control. J. Microelectromech. Syst. 21, 596–604 (2012)

    Article  Google Scholar 

  27. Gerratt, A.P., Bergbreiter, S.: Microfabrication of compliant all-polymer MEMS thermal actuators. Sensors Actuators A Phys. 177, 16–22 (2012)

    Article  Google Scholar 

  28. Kim, Y.-S., Dagalakis, N.G., Gupta, S.K.: Design of MEMS based three-axis motion stage by incorporating a nested structure. J. Micromech. Microeng. 24, 075009 (2014)

    Article  Google Scholar 

  29. Li, J., Vadahanambi, S., Kee, C.-D., Oh, I.-K.: Electrospun fullerenol-cellulose biocompatible actuators. Biomacromolecules 12, 2048–2054 (2011)

    Article  Google Scholar 

  30. Liang, J., Huang, L., Li, N., Huang, Y., Wu, Y., Fang, S., Oh, J., Kozlov, M., Ma, Y., Li, F., Baughman, R., Chen, Y.: Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 6, 4508–4519 (2012)

    Article  Google Scholar 

  31. Buja, F., Sumant, A.V., Kokorian, J., van Spengen, W.M.: Electrically conducting ultrananocrystalline diamond for the development of a next generation of micro-actuators. Sensors Actuators A Phys. 214, 259–266 (2014)

    Article  Google Scholar 

  32. Pal, S., Xie, H.: Fabrication of robust electrothermal MEMS devices using aluminum-tungsten bimorphs and polyimide thermal insulation. J. Micromech. Microeng. 22, 115036 (2012)

    Article  Google Scholar 

  33. Khazaai, J.J., Qu, H.: Electro-thermal MEMS switch with latching mechanism: design and characterization. IEEE Sensors J. 12, 2830–2838 (2012)

    Article  Google Scholar 

  34. Xu, Y., Li, G.: Thermal actuation using nanocomposites: a computational analysis. J. Heat Transf. 134, 112401 (2012)

    Article  Google Scholar 

  35. Liu, Q., Liu, L., Kuang, J., Dai, Z., Han, J., Zhang, Z.: Nanostructured carbon materials based electrothermal air pump actuators. Nanoscale 6, 6932–6938 (2014)

    Article  Google Scholar 

  36. Brown, K.A., Eichelsdorfer, D.J., Mirkin, C.A.: Cantilever-free thermal interfacing. J. Vac. Sci. Technol. B31, 06F201 (2013)

    Article  Google Scholar 

  37. Sharpe Jr., W.N.: Mechanical properties of MEMS materials. In: Gad-el-Hak, M. (ed.) MEMS: Introduction and Fundamentals, 2nd edn. CRC/Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  38. Howell, L.L., McLain, T.W., Baker, M.S., Lott, C.D.: Techniques in the design of thermomechanical actuators. In: Leondes, C.T. (ed.) MEMS/NEMS Handbook: Techniques and Applications. Sensors and Actuators, vol. 4, pp. 187–200. Springer, New York (2006)

    Google Scholar 

  39. Huang, Q.-A., Lee, N.K.S.: Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator. Microsyst. Technol. 5, 133–137 (1999)

    Article  Google Scholar 

  40. Chu, W.-H., Mehregany, M., Mullen, R.L.: Analysis of tip deflection and force of a bimetallic cantilever microactuator. J. Micromech. Microeng. 3, 4–7 (1993)

    Article  Google Scholar 

  41. Jungen, A., Pfenniger, M., Tonteling, M., Stampfer, C., Hierold, C.: Electrothermal effects at the microscale and their consequences on system design. J. Micromech. Microeng. 16, 1633–1638 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Brown, J.J., Bright, V.M. (2015). Thermal Actuators. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_313-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_313-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics