Nano-Optomechanical Systems (NOMS)
Synonyms
Definition
Nano- and micro-optomechanical systems (NOMS and MOMS) are nanoscale and microscale mechanical devices that are driven by optical forces and sensed with optical detection methods.
Chemical and Physical Principles
Light can generate forces on matter. The nature of these forces is electromagnetic force, or Lorentz force. Fundamentally they originate from the forces exerted on the charges (electrons and nuclei) that constitute the matter by the electric and magnetic fields in light. The optical forces are generally considered too weak to have any significance at macroscale. However, the emergence and rapid progress of nanotechnology provided an unprecedented platform where the very feeble optical forces can play significant roles and lead to various optomechanical phenomena. On the one hand, nanoscale structures can be engineered to tightly confine light near or below...
Keywords
Mechanical Motion Optical Cavity Force Density Optical Tweezer Optical ForceReferences
- 1.Pfeifer, R.N.C., Nieminen, T.A., Heckenberg, N.R., Rubinsztein-Dunlop H.: Colloquium: Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79(4), 1197–1216 (2007)CrossRefGoogle Scholar
- 2.Barnett, S.M., Loudon, R.: On the electromagnetic force on a dielectric medium. J. Phys. B. At. Mol. Opt. Phys. 39(15), S671–S684 (2006)CrossRefGoogle Scholar
- 3.Zakharian, A.R., Polynkin, P., Mansuripur, M., Moloney, J.V.: Single-beam trapping of micro-beads in polarized light: numerical simulations. Opt. Express 14(8), 3660 (2006)CrossRefGoogle Scholar
- 4.Loudon, R., Barnett, S.M.: Theory of the radiation pressure on dielectric slabs, prisms and single surfaces. Opt. Express 14(24), 11855 (2006)CrossRefGoogle Scholar
- 5.Mansuripur, M., Zakharian, A.R., Wright, E.M.: Electromagnetic-force distribution inside matter. Phys. Rev. A 88(2), 023826 (2013)CrossRefGoogle Scholar
- 6.Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)Google Scholar
- 7.Barnett, S.M., Loudon, R.: The enigma of optical momentum in a medium. Philos. Transact. A. Math. Phys. Eng. Sci. 368(1914), 927–939 (2010)CrossRefGoogle Scholar
- 8.Baxter, C., Loudon, R.: Radiation pressure and the photon momentum in dielectrics. J. Mod. Opt. 57(10), 830–842 (2010)CrossRefGoogle Scholar
- 9.Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Pergamon Press, Oxford, New York (1984)Google Scholar
- 10.Rakich, P.T., Popović, M.A., Wang, Z.: General treatment of optical forces and potentials in mechanically variable photonic systems. Opt. Express 17(20), 18116–18135 (2009)CrossRefGoogle Scholar
- 11.Rakich, P.T., Wang, Z., Davids, P.: Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion. Opt. Lett. 36(2), 217–219 (2011)CrossRefGoogle Scholar
- 12.Metzger, C.H., Karrai, K.: Cavity cooling of a microlever. Nature 432(7020), 1002–1005 (2004)CrossRefGoogle Scholar
- 13.Rugar, D., Budakian, R., Mamin, H.J., Chui, B.W.: Single spin detection by magnetic resonance force microscopy. Nature 430(6997), 329–332 (2004)CrossRefGoogle Scholar
- 14.Anetsberger, G., Arcizet, O., Unterreithmeier, Q.P., Rivière, R., Schliesser, A., Weig, E.M., Kotthaus, J.P., Kippenberg, T.J.: Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys. 5(12), 909–914 (2009)CrossRefGoogle Scholar
- 15.Basarir, O., Bramhavar, S., Ekinci, K.L.: Near-field optical transducer for nanomechanical resonators. Appl. Phys. Lett. 97(25), 253114 (2010)CrossRefGoogle Scholar
- 16.Li, M., Pernice, W.H.P., Xiong, C., Baehr-Jones, T., Hochberg, M., Tang, H.X.: Harnessing optical forces in integrated photonic circuits. Nature 456(7221), 480–484 (2008)CrossRefGoogle Scholar
- 17.Eichenfield, M., Camacho, R., Chan, J., Vahala, K.J., Painter, O.: A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459(7246), 550–555 (2009)CrossRefGoogle Scholar
- 18.Li, M., Pernice, W.H.P., Tang, H.X.: Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities. Appl. Phys. Lett. 97(18), 183110 (2010)CrossRefGoogle Scholar
- 19.Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321(5893), 1172–1176 (2008)CrossRefGoogle Scholar
- 20.Aspelmeyer, M., Kippenberg, T. J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391–1452 (2014)Google Scholar
- 21.Moffitt, J.R., Chemla, Y.R., Smith, S.B., Bustamante, C.: Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008)CrossRefGoogle Scholar
- 22.Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288 (1986)CrossRefGoogle Scholar
- 23.Braginsky, V.B., Strigin, S.E., Vyatchanin, S.P.: Parametric oscillatory instability in Fabry–Perot interferometer. Phys. Lett. A 287(5–6), 331–338 (2001)CrossRefGoogle Scholar
- 24.Braginsky, V.B., Strigin, S.E., Vyatchanin, S.P.: Analysis of parametric oscillatory instability in power recycled LIGO interferometer. Phys. Lett. A 305(3–4), 111–124 (2002)CrossRefGoogle Scholar
- 25.Rokhsari, H., Kippenberg, T.J., Carmon, T., Vahala, K.J.: Radiation-pressure-driven micro-mechanical oscillator. Opt. Express 13(14), 5293 (2005)CrossRefGoogle Scholar
- 26.Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K.: Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95(3), 033901 (2005)CrossRefGoogle Scholar
- 27.Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics. Opt. Express 15(25), 17172 (2007)CrossRefGoogle Scholar
- 28.Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K., Kippenberg, T.: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97(24), 243905 (2006)CrossRefGoogle Scholar
- 29.Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478(7367), 89–92 (2011)CrossRefGoogle Scholar
- 30.Gigan, S., Böhm, H.R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bäuerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444(7115), 67–70 (2006)CrossRefGoogle Scholar
- 31.Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M., Heidmann, A.: Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444(7115), 71–74 (2006)CrossRefGoogle Scholar
- 32.Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452(7183), 72–75 (2008)CrossRefGoogle Scholar
- 33.Eichenfield, M., Chan, J., Camacho, R.M., Vahala, K.J., Painter, O.: Optomechanical crystals. Nature 462(7269), 78–82 (2009)CrossRefGoogle Scholar
- 34.Wiederhecker, G.S., Chen, L., Gondarenko, A., Lipson, M.: Controlling photonic structures using optical forces. Nature 462(7273), 633–636 (2009)CrossRefGoogle Scholar
- 35.Li, M., Pernice, W.H.P., Tang, H.X.: Tunable bipolar optical interactions between guided lightwaves. Nat. Photonics 3(8), 464–468 (2009)CrossRefGoogle Scholar
- 36.Sankey, J.C., Yang, C., Zwickl, B.M., Jayich, A.M., Harris, J.G.E.: Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6(9), 707–712 (2010)CrossRefGoogle Scholar
- 37.Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330(6010), 1520–1523 (2010)CrossRefGoogle Scholar
- 38.Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69–73 (2011)CrossRefGoogle Scholar
- 39.Bagheri, M., Poot, M., Li, M., Pernice, W.P.H., Tang, H.X.: Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotechnol. 6(11), 726–732 (2011)CrossRefGoogle Scholar
- 40.Zhang, M., Wiederhecker, G.S., Manipatruni, S., Barnard, A., McEuen, P., Lipson, M.: Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109(23), 233906 (2012)CrossRefGoogle Scholar
- 41.Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482(7383), 63–67 (2012)CrossRefGoogle Scholar
- 42.Safavi-Naeini, A.H., Gröblacher, S., Hill, J.T., Chan, J., Aspelmeyer, M., Painter, O.: Squeezed light from a silicon micromechanical resonator. Nature 500(7461), 185–189 (2013)CrossRefGoogle Scholar
- 43.Shkarin, A.B.., Flowers-Jacobs, N.E., Hoch, S.W., Kashkanova, A.D., Deutsch, C., Reichel, J., Harris, J.G.E.: Optically mediated hybridization between two mechanical modes. Phys. Rev. Lett. 112(1), 013602 (2014)CrossRefGoogle Scholar
- 44.Li, H., Li, M.: Optomechanical photon shuttling between photonic cavities. Nat. Nanotechnol. 9(11), 913–919 (2014)CrossRefGoogle Scholar
- 45.Rosenberg, J., Lin, Q., Painter, O.: Static and dynamic wavelength routing via the gradient optical force. Nat. Photonics 3(8), 478–483 (2009)CrossRefGoogle Scholar