Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nano-Optomechanical Systems (NOMS)

  • Huan Li
  • Mo Li
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_295-2

Synonyms

Definition

Nano- and micro-optomechanical systems (NOMS and MOMS) are nanoscale and microscale mechanical devices that are driven by optical forces and sensed with optical detection methods.

Chemical and Physical Principles

Light can generate forces on matter. The nature of these forces is electromagnetic force, or Lorentz force. Fundamentally they originate from the forces exerted on the charges (electrons and nuclei) that constitute the matter by the electric and magnetic fields in light. The optical forces are generally considered too weak to have any significance at macroscale. However, the emergence and rapid progress of nanotechnology provided an unprecedented platform where the very feeble optical forces can play significant roles and lead to various optomechanical phenomena. On the one hand, nanoscale structures can be engineered to tightly confine light near or below...

Keywords

Mechanical Motion Optical Cavity Force Density Optical Tweezer Optical Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Pfeifer, R.N.C., Nieminen, T.A., Heckenberg, N.R., Rubinsztein-Dunlop H.: Colloquium: Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys. 79(4), 1197–1216 (2007)CrossRefGoogle Scholar
  2. 2.
    Barnett, S.M., Loudon, R.: On the electromagnetic force on a dielectric medium. J. Phys. B. At. Mol. Opt. Phys. 39(15), S671–S684 (2006)CrossRefGoogle Scholar
  3. 3.
    Zakharian, A.R., Polynkin, P., Mansuripur, M., Moloney, J.V.: Single-beam trapping of micro-beads in polarized light: numerical simulations. Opt. Express 14(8), 3660 (2006)CrossRefGoogle Scholar
  4. 4.
    Loudon, R., Barnett, S.M.: Theory of the radiation pressure on dielectric slabs, prisms and single surfaces. Opt. Express 14(24), 11855 (2006)CrossRefGoogle Scholar
  5. 5.
    Mansuripur, M., Zakharian, A.R., Wright, E.M.: Electromagnetic-force distribution inside matter. Phys. Rev. A 88(2), 023826 (2013)CrossRefGoogle Scholar
  6. 6.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)Google Scholar
  7. 7.
    Barnett, S.M., Loudon, R.: The enigma of optical momentum in a medium. Philos. Transact. A. Math. Phys. Eng. Sci. 368(1914), 927–939 (2010)CrossRefGoogle Scholar
  8. 8.
    Baxter, C., Loudon, R.: Radiation pressure and the photon momentum in dielectrics. J. Mod. Opt. 57(10), 830–842 (2010)CrossRefGoogle Scholar
  9. 9.
    Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Pergamon Press, Oxford, New York (1984)Google Scholar
  10. 10.
    Rakich, P.T., Popović, M.A., Wang, Z.: General treatment of optical forces and potentials in mechanically variable photonic systems. Opt. Express 17(20), 18116–18135 (2009)CrossRefGoogle Scholar
  11. 11.
    Rakich, P.T., Wang, Z., Davids, P.: Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion. Opt. Lett. 36(2), 217–219 (2011)CrossRefGoogle Scholar
  12. 12.
    Metzger, C.H., Karrai, K.: Cavity cooling of a microlever. Nature 432(7020), 1002–1005 (2004)CrossRefGoogle Scholar
  13. 13.
    Rugar, D., Budakian, R., Mamin, H.J., Chui, B.W.: Single spin detection by magnetic resonance force microscopy. Nature 430(6997), 329–332 (2004)CrossRefGoogle Scholar
  14. 14.
    Anetsberger, G., Arcizet, O., Unterreithmeier, Q.P., Rivière, R., Schliesser, A., Weig, E.M., Kotthaus, J.P., Kippenberg, T.J.: Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys. 5(12), 909–914 (2009)CrossRefGoogle Scholar
  15. 15.
    Basarir, O., Bramhavar, S., Ekinci, K.L.: Near-field optical transducer for nanomechanical resonators. Appl. Phys. Lett. 97(25), 253114 (2010)CrossRefGoogle Scholar
  16. 16.
    Li, M., Pernice, W.H.P., Xiong, C., Baehr-Jones, T., Hochberg, M., Tang, H.X.: Harnessing optical forces in integrated photonic circuits. Nature 456(7221), 480–484 (2008)CrossRefGoogle Scholar
  17. 17.
    Eichenfield, M., Camacho, R., Chan, J., Vahala, K.J., Painter, O.: A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459(7246), 550–555 (2009)CrossRefGoogle Scholar
  18. 18.
    Li, M., Pernice, W.H.P., Tang, H.X.: Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities. Appl. Phys. Lett. 97(18), 183110 (2010)CrossRefGoogle Scholar
  19. 19.
    Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321(5893), 1172–1176 (2008)CrossRefGoogle Scholar
  20. 20.
    Aspelmeyer, M., Kippenberg, T. J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391–1452 (2014)Google Scholar
  21. 21.
    Moffitt, J.R., Chemla, Y.R., Smith, S.B., Bustamante, C.: Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008)CrossRefGoogle Scholar
  22. 22.
    Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288 (1986)CrossRefGoogle Scholar
  23. 23.
    Braginsky, V.B., Strigin, S.E., Vyatchanin, S.P.: Parametric oscillatory instability in Fabry–Perot interferometer. Phys. Lett. A 287(5–6), 331–338 (2001)CrossRefGoogle Scholar
  24. 24.
    Braginsky, V.B., Strigin, S.E., Vyatchanin, S.P.: Analysis of parametric oscillatory instability in power recycled LIGO interferometer. Phys. Lett. A 305(3–4), 111–124 (2002)CrossRefGoogle Scholar
  25. 25.
    Rokhsari, H., Kippenberg, T.J., Carmon, T., Vahala, K.J.: Radiation-pressure-driven micro-mechanical oscillator. Opt. Express 13(14), 5293 (2005)CrossRefGoogle Scholar
  26. 26.
    Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K.: Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95(3), 033901 (2005)CrossRefGoogle Scholar
  27. 27.
    Kippenberg, T.J., Vahala, K.J.: Cavity opto-mechanics. Opt. Express 15(25), 17172 (2007)CrossRefGoogle Scholar
  28. 28.
    Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K., Kippenberg, T.: Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97(24), 243905 (2006)CrossRefGoogle Scholar
  29. 29.
    Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., Hill, J.T., Krause, A., Gröblacher, S., Aspelmeyer, M., Painter, O.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478(7367), 89–92 (2011)CrossRefGoogle Scholar
  30. 30.
    Gigan, S., Böhm, H.R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bäuerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444(7115), 67–70 (2006)CrossRefGoogle Scholar
  31. 31.
    Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M., Heidmann, A.: Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444(7115), 71–74 (2006)CrossRefGoogle Scholar
  32. 32.
    Thompson, J.D., Zwickl, B.M., Jayich, A.M., Marquardt, F., Girvin, S.M., Harris, J.G.E.: Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452(7183), 72–75 (2008)CrossRefGoogle Scholar
  33. 33.
    Eichenfield, M., Chan, J., Camacho, R.M., Vahala, K.J., Painter, O.: Optomechanical crystals. Nature 462(7269), 78–82 (2009)CrossRefGoogle Scholar
  34. 34.
    Wiederhecker, G.S., Chen, L., Gondarenko, A., Lipson, M.: Controlling photonic structures using optical forces. Nature 462(7273), 633–636 (2009)CrossRefGoogle Scholar
  35. 35.
    Li, M., Pernice, W.H.P., Tang, H.X.: Tunable bipolar optical interactions between guided lightwaves. Nat. Photonics 3(8), 464–468 (2009)CrossRefGoogle Scholar
  36. 36.
    Sankey, J.C., Yang, C., Zwickl, B.M., Jayich, A.M., Harris, J.G.E.: Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6(9), 707–712 (2010)CrossRefGoogle Scholar
  37. 37.
    Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330(6010), 1520–1523 (2010)CrossRefGoogle Scholar
  38. 38.
    Safavi-Naeini, A.H., Mayer Alegre, T.P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472(7341), 69–73 (2011)CrossRefGoogle Scholar
  39. 39.
    Bagheri, M., Poot, M., Li, M., Pernice, W.P.H., Tang, H.X.: Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotechnol. 6(11), 726–732 (2011)CrossRefGoogle Scholar
  40. 40.
    Zhang, M., Wiederhecker, G.S., Manipatruni, S., Barnard, A., McEuen, P., Lipson, M.: Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109(23), 233906 (2012)CrossRefGoogle Scholar
  41. 41.
    Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482(7383), 63–67 (2012)CrossRefGoogle Scholar
  42. 42.
    Safavi-Naeini, A.H., Gröblacher, S., Hill, J.T., Chan, J., Aspelmeyer, M., Painter, O.: Squeezed light from a silicon micromechanical resonator. Nature 500(7461), 185–189 (2013)CrossRefGoogle Scholar
  43. 43.
    Shkarin, A.B.., Flowers-Jacobs, N.E., Hoch, S.W., Kashkanova, A.D., Deutsch, C., Reichel, J., Harris, J.G.E.: Optically mediated hybridization between two mechanical modes. Phys. Rev. Lett. 112(1), 013602 (2014)CrossRefGoogle Scholar
  44. 44.
    Li, H., Li, M.: Optomechanical photon shuttling between photonic cavities. Nat. Nanotechnol. 9(11), 913–919 (2014)CrossRefGoogle Scholar
  45. 45.
    Rosenberg, J., Lin, Q., Painter, O.: Static and dynamic wavelength routing via the gradient optical force. Nat. Photonics 3(8), 478–483 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisUSA