Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Solid-State Heat Convertors

  • Joseph P. HeremansEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_271-2


Solid-state Heat Converters are solid-state devices that convert heat into electrical work without any moving parts, for example, by using thermoelectric effects or heat-induced changes in magnetic effects.


Thermoelectric energy conversion emerged in the middle of the twentieth century. Early pioneers were Maria Telkes [1, 2], Abram Ioffe [3], and Julian Goldsmid [4], who developed thermoelectric semiconductors and showed that they could be used for electrical power generation from heat and for solid-state cooling. Our understanding of thermoelectricity itself dates back almost two centuries, with the discovery of the thermoelectric power of solids (the Seebeck coefficient) by Thomas Seebeck [5] in 1821–1822. Lord Kelvin [6] discovers the Thomson heat and understood thermoelectric effects to be part of classical thermodynamics. He derived his reciprocity relations by treating electrical currents like fluids in conventional mechanical heat engines. Lord Rayleigh [7...


Thermoelectric Material Thermoelectric Power Acoustic Phonon Lattice Thermal Conductivity Gadolinium Gallium Garnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



The author acknowledges help with the manuscript editing and figures from Ms. Renee Ripley and support from the NSF MRSEC program, Grant No. DMR 1420451.


  1. 1.
    Telkes, M.: The efficiency of thermoelectric generators. I. J. Appl. Phys. 18(12), 1116–1127 (1947)CrossRefGoogle Scholar
  2. 2.
    Telkes, M.: Power output of thermoelectric generators. J. Appl. Phys. 25(8), 1058–1059 (1954)CrossRefGoogle Scholar
  3. 3.
    Ioffe, A.F.: Semiconductor Thermoelements and Thermoelectric Cooling. Inforsearch, London (1957)Google Scholar
  4. 4.
    Goldsmid, H.J.: Thermoelectric Refrigeration. Plenum Press, New York (1964)CrossRefGoogle Scholar
  5. 5.
    Seebeck, T.J.: Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. In: Abhandlungen der Preussischen Akad, Wissenschaften, pp. 265–373 (1822–1823). Reprinted W. Engelmann, Leipzig (1895)Google Scholar
  6. 6.
    Thomson, W.: On the dynamical theory of heat. Part V. Thermo-electric currents. Trans. R. Soc. Edinb. 21, 123–171 (1857). https://archive.org/stream/transactionsofro21royal#page/n3/mode/2up CrossRefGoogle Scholar
  7. 7.
    Lord Rayleigh, F.R.S.: On the thermodynamic efficiency of the thermopile. Philos. Mag. 20, 361–363 (1885)CrossRefGoogle Scholar
  8. 8.
    Altenkirch, E.: Über den Nutzeffekt der Thermosäule. Phys. Ztg. 10(16), 560–568 (1909)Google Scholar
  9. 9.
    Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1960)Google Scholar
  10. 10.
    Roberts, R.B.: Absolute scales for thermoelectricity. Measurement 4(3), 101–103 (1986). doi:10.1016/0263-2241(86)90016-3; Roberts, R.B.: Absolute scale of thermoelectricity. Philos. Mag. 36, 91 (1977); Roberts, R.B.: Absolute scale of thermoelectricity II. Philos. Mag. B 43, 1123 (1981); Roberts, R.B., Righini, F., Compton, R.C.: Absolute scale of thermoelectricity III. Philos. Mag. B 52, 1147 (1985)Google Scholar
  11. 11.
    Vining, C.B.: An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83–85 (2009)CrossRefGoogle Scholar
  12. 12.
    Heremans, J.P., Dresselhaus, M.S., Bell, L., Morelli, D.T.: When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8, 471–473 (2013)CrossRefGoogle Scholar
  13. 13.
    Ioffe, A.F.: Physics of Semiconductors. Academic, New York (1960)Google Scholar
  14. 14.
    Berman, R.: Thermal Conduction in Solids. Clarendon, Oxford (1976)Google Scholar
  15. 15.
    Morelli, D.T., Heremans, J.P., Slack, G.A.: Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Phys. Rev. B 66, 195304 (2002)CrossRefGoogle Scholar
  16. 16.
    Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)CrossRefGoogle Scholar
  17. 17.
    Lindsay, L., Broido, D.A., Reinecke, T.L.: Ab initio thermal transport in compound semiconductors. Phys. Rev. B 87, 165201 (2013)CrossRefGoogle Scholar
  18. 18.
    Morelli, D.T., Meisner, G.P.: Low temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 77, 3777 (1995)CrossRefGoogle Scholar
  19. 19.
    Meisner, G.P., Morelli, D.T., Hu, S., Yang, J., Uher, C.: Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members. Phys. Rev. Lett. 80, 3551 (1998)CrossRefGoogle Scholar
  20. 20.
    Sales, B.C., Mandrus, D., Williams, R.K.: Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996)CrossRefGoogle Scholar
  21. 21.
    Shi, X., Yang, J., Salvador, J.R., Chi, M.F., Cho, J.Y., Wang, H., Bai, S.Q., Yang, J.H., Zhang, W.Q., Chen, L.D.: Multiple-filled skutterudites: high thermoelectric figure of merit through spearately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837 (2011)CrossRefGoogle Scholar
  22. 22.
    Nielsen, M.D., Ozolins, V., Heremans, J.P.: Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6(2), 570–578 (2013)CrossRefGoogle Scholar
  23. 23.
    Jovovic, V., Heremans, J.P.: Doping effects on the thermoelectric properties of AgSbTe2. J. Electron. Mater. 38, 1504–1509 (2009)CrossRefGoogle Scholar
  24. 24.
    Jovovic, V., Heremans, J.P.: Energy band gap and valence band structure of AgSbTe2. Phys. Rev. B 77, 245204 (2008)CrossRefGoogle Scholar
  25. 25.
    Morelli, D.T., Jovovic, V., Heremans, J.P.: Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101, 035901 (2008)CrossRefGoogle Scholar
  26. 26.
    Lu, X., Morelli, D.T., Xia, Y., Zhou, F., Ozolins, V., Chi, H., Uher, C.: High performance thermoelectricity in earth-abundant compounds based on natural mineral tetrahedrites. Adv. Energy Mater. 3, 342–348 (2012)CrossRefGoogle Scholar
  27. 27.
    Delaire, O., Ma, J., Marty, K., May, A.F., McGuire, M.A., Du, M.-H., Singh, D.J., Podlesnyak, A., Ehlers, G., Lumsden, M.D., Sales, B.C.: Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011)CrossRefGoogle Scholar
  28. 28.
    Zhao, L.-D., Lo, S.-H., Zhang, Y., Sun, H., Tan, G., Uher, C., Wolverton, C., Dravid, V.P., Kanatzidis, M.G.: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)CrossRefGoogle Scholar
  29. 29.
    Heremans, J.P.: Thermoelectricity: the ugly duckling. Nature 508, 327–328 (2014)CrossRefGoogle Scholar
  30. 30.
    Heremans, J.P., Thrush, C.M., Morelli, D.T.: Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys. 98, 063703 (2005)CrossRefGoogle Scholar
  31. 31.
    Girard, S.N., He, J., Zhou, X.Y., Shoemaker, D., Jaworski, C.M., Uher, C., Dravid, V.P., Heremans, J.P., Kanatzidis, M.G.: High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 133, 16588–16597 (2011)CrossRefGoogle Scholar
  32. 32.
    Biswas, K., He, J.Q., Blum, I.D., Chun, I.W., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 490, 414–418 (2012)CrossRefGoogle Scholar
  33. 33.
    Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)CrossRefGoogle Scholar
  34. 34.
    Hicks, L.D., Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631–16634 (1993)CrossRefGoogle Scholar
  35. 35.
    Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. U. S. A. 93, 7436–7439 (1996)CrossRefGoogle Scholar
  36. 36.
    Cutler, M., Mott, N.F.: Observation of Anderson localization in an electron gas. Phys. Rev. 181, 1336 (1969)CrossRefGoogle Scholar
  37. 37.
    Heremans, J.P.: Low-dimensional thermoelectricity. Acta Phys. Polon. 108, 609–634 (2005)CrossRefGoogle Scholar
  38. 38.
    Murata, M., Nakamura, D., Hasegawa, Y., Komine, T., Taguchi, T., Nakamura, S., Jovovic, V., Heremans, J.P.: Thermoelectric properties of bismuth nanowires in a quartz template. Appl. Phys. Lett. 94, 192104 (2009)CrossRefGoogle Scholar
  39. 39.
    Heremans, J., Thrush, C.M.: Thermoelectric power of bismuth nanowires. Phys. Rev. B 59, 12579 (1999)CrossRefGoogle Scholar
  40. 40.
    Murata, M., Nakamura, D., Hasegawa, Y., Komine, T., Taguchi, T., Nakamura, S., Jaworski, C.M., Jovovic, V., Heremans, J.P.: Mean free path limitation of thermoelectric properties of bismuth nanowire. J. Appl. Phys. 105, 113706 (2009)CrossRefGoogle Scholar
  41. 41.
    Heremans, J., Thrush, C.M., Lin, Y.-M., Cronin, S.B., Dresselhaus, M.S.: Transport properties of antimony nanowires. Phys. Rev. B 63, 085406 (2001)CrossRefGoogle Scholar
  42. 42.
    Heremans, J.P., Thrush, C.M., Morelli, D.T., Wu, M.-C.: Thermoelectric power of bismuth nanocomposites. Phys. Rev. Lett. 88, 216801 (2002)CrossRefGoogle Scholar
  43. 43.
    Heremans, J.P., Thrush, C.M., Morelli, D.T., Wu, M.-C.: Resistance, magnetoresistance and thermopower of zinc nanowire composites. Phys. Rev. Lett. 91, 076804 (2003)CrossRefGoogle Scholar
  44. 44.
    Heremans, J.P., Thrush, C.M., Morelli, D.T.: Thermopower enhancement in lead telluride nanostructures. Phys. Rev. B 70, 115334 (2004)CrossRefGoogle Scholar
  45. 45.
    Heremans, J.P., Wiendlocha, B., Chamoire, A.M.: Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012)CrossRefGoogle Scholar
  46. 46.
    Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–558 (2008)CrossRefGoogle Scholar
  47. 47.
    Jaworski, C.M., Kulbachinskii, V.A., Heremans, J.P.: Tin forms a resonant level in Bi2Te3 that enhances the room temperature thermoelectric power. Phys. Rev. B 80, 233201 (2009)CrossRefGoogle Scholar
  48. 48.
    Daybell, M.D., Steyert, W.A.: Localized magnetic impurity states in metals: some experimental relationships. Rev. Mod. Phys. 40, 380 (1968)CrossRefGoogle Scholar
  49. 49.
    Heeger, A.J.: Localized moments and nonmoments in metals. In: Seitz, F., Turnbull, D., Ehrenreich, H. (eds.) Solid State Physics, vol. 23, pp. 284–407. Academic, New York (1969)Google Scholar
  50. 50.
    Kondo, J.: Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 34, 372 (1965)CrossRefGoogle Scholar
  51. 51.
    Blatt, F.J., Schroeder, P.A., Foiles, C.L., Greig, D.: Thermoelectric Power of Metals. Plenum Press, New York (1976)CrossRefGoogle Scholar
  52. 52.
    Mahan, G.D.: Good thermoelectrics. In: Ehrenreich, H., Spaepen, F. (eds.) Solid State Physics, vol. 51, pp. 81–152. Academic, New York (1997)Google Scholar
  53. 53.
    Fisk, Z., Sarrao, J.L., Thompson, J.D.: Heavy fermions. Curr. Opin. Solid State Mater. Sci. 1, 42 (1996), Ce3Bi4Pt3, and CePd3 42 (1996)CrossRefGoogle Scholar
  54. 54.
    Boona, S.R., Morelli, D.T.: Enhanced thermoelectric properties of CePd3−xPtx. Appl. Phys. Lett. 101, 101909 (2012)CrossRefGoogle Scholar
  55. 55.
    Lehr, G.J., Morelli, D.T., Jin, H., Heremans, J.P.: Enhanced thermoelectric power factor in Yb1-x Scx Al2 alloys using chemical pressure tuning of the Yb valence. J. Appl. Phys. 114, 223712 (2013)CrossRefGoogle Scholar
  56. 56.
    Boona, S.R., Myers, R.C., Heremans, J.P.: Spin caloritronics. Energy Environ. Sci. 7, 885–910 (2014). doi:10.1039/C3EE43299HCrossRefGoogle Scholar
  57. 57.
    Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., Maekawa, S., Saitoh, E.: Observation of the spin Seebeck effect. Nature 455, 778–781 (2008)CrossRefGoogle Scholar
  58. 58.
    Jaworski, C.M., Yang, J., Mack, S., Awschalom, D.D., Heremans, J.P., Myers, R.C.: Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010)CrossRefGoogle Scholar
  59. 59.
    Uchida, K., Xiao, J., Adachi, H., Ohe, J., Takahashi, S., Ieda, J., Ota, T., Kajiwara, Y., Umezawa, H., Kawai, H., Bauer, G.E.W., Maekawa, S., Saitoh, E.: Spin Seebeck Insulator. Nat. Mater. 9, 894–897 (2010). doi:10.1038/NMAT2856CrossRefGoogle Scholar
  60. 60.
    Uchida, K.-i., Adachi, H., Ota, T., Nakayama, H., Maekawa, S., Saitoh, E.: Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010)CrossRefGoogle Scholar
  61. 61.
    Jaworski, C.M., Myers, R.C., Johnston-Halperin, E., Heremans, J.P.: Giant spin Seebeck effect in a non-magnetic material. Nature 487, 210–213 (2012)CrossRefGoogle Scholar
  62. 62.
    Hoffman, S., Upadhyaya, P., Tserkovnyak, Y.: Landau-Lifshitz theory of the longitudinal spin Seebeck effect. Phys. Rev. B 88, 064408 (2013)CrossRefGoogle Scholar
  63. 63.
    Boona, S.R., Heremans, J.P.: Magnon thermal mean free path in yttrium iron garnets. Phys. Rev. B 90, 064421 (2014). doi:10.1103/PhysRevB.90.064421CrossRefGoogle Scholar
  64. 64.
    Kovalev, A.A., Tserkovnyak, Y.: Magnetocaloritronic nanomachines. Solid State Commun. 150, 500–504 (2010)CrossRefGoogle Scholar
  65. 65.
    Weiler, M., Althammer, M., Schreier, M., Lotze, J., Pernpeintner, M., Meyer, S., Huebl, H., Gross, R., Kamra, A., Xiao, J., Chen, Y.-T., Jiao, H.J., Bauer, G.E.W., Goennenwein, S.T.B.: Experimental test of the spin mixing interface conductivity concept. Phys. Rev. Lett. 111, 176601 (2013)CrossRefGoogle Scholar
  66. 66.
    Hoffmann, A.: Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013)CrossRefGoogle Scholar
  67. 67.
    Kehlberger, A., Ritzmann, U., Hinzke, D., Guo, E.-J., Cramer, J., Jakob, G., Onbasali, M. C., Kim, D. H., Ross, C. A., Jungfleisch, M. B., Hillebrands, B., Nowak, U., and Kläui, M.: Length scale of the spin Seebeck effect, Phys. Rev. Lett. 115, 096602 (2015)Google Scholar
  68. 68.
    Heremans, J., Jaworski, C.: Spin thermoelectric generator with multiple magnetic layers. Ohio State University Technology Commercialization Office, Invention disclosure T2012-251 (2012)Google Scholar
  69. 69.
    Blatt, F.J., Flood, D.J., Rowe, V., Schroeder, P.A., Cox, J.E.: Magnon-drag thermopower in iron. Phys. Rev. Lett. 18, 395 (1967)CrossRefGoogle Scholar
  70. 70.
    Lucassen, M.E., Wong, C.H., Duine, R.A., Tserkovnyak, Y.: Spin-transfer mechanism for magnon-drag thermopower. Appl. Phys. Lett. 99, 262506 (2011)CrossRefGoogle Scholar
  71. 71.
    Jin, H., Yang, Z., Myers, R.C., Heremans, J.P.: Spin-Seebeck like signal in ferromagnetic bulk metallic glass without platinum contacts. Solid State Commun. 198(Special Issue on Spin Mechanics), 40–44 (2014)CrossRefGoogle Scholar
  72. 72.
    Watzman, S.J., Duine, R.A., Tserkovnyak, Y., Jin, H., Prakash, A., Zheng, Y., and Heremans, J.P.: Magnon-drag thermopower and Nernst coefficient in Fe and Co, arXiv 1603.03736 (2016)Google Scholar
  73. 73.
    MacDonald, D.C.K.: Thermoelectricity: An Introduction to the Principles. Wiley, New York (1962)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace Engineering, Department of Physics and Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA