Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Wet Adhesion in Tree and Torrent Frogs

  • Thomas Endlein
  • W. Jon. P. Barnes
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_257-2


Biomimetics of Animal Adhesion

Our understanding of the adhesive mechanisms of climbing animals has increased rapidly in recent years, in no small way due to advances in materials science providing both the tools and the theoretical background. This research has shown that, as a result of millions of years of evolution, the adhesive mechanisms of climbing animals are highly dynamic, showing many features that are the envy of materials scientists. Unlike most man-made adhesives, they (i) cope well with rough and anti-adhesive substrates, (ii) have self-cleaning mechanisms and so recover quickly following contamination, (iii) can control attachment so that it only occurs when required, and (iv) possess mechanisms for effortless detachment. Finally (v), since animals attach and detach their adhesive pads every time they take a step, sticking ability is not lost with repeated application, this being mainly due to their resistance to wear and contamination. To date, most research...


Friction Force Adhesive Force Ground Reaction Force Tree Frog Effective Elastic Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., Full, R.J.: Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. U. S. A. 99(19), 12252–12256 (2002). doi:10.1073/pnas.192252799CrossRefGoogle Scholar
  2. 2.
    Federle, W., Riehle, M., Curtis, A., Full, R.: An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr. Comp. Biol. 42, 1100–1106 (2002). doi:10.1093/icb/42.6.1100CrossRefGoogle Scholar
  3. 3.
    Hanna, G., Barnes, W.J.P.: Adhesion and detachment of the toe pads of tree frogs. J. Exp. Biol. 155, 103–125 (1991)Google Scholar
  4. 4.
    Rosenberg, H.I., Rose, R.: Volar adhesive pads of the feathertail glider, Acrobates pygmaeus (Marsupialia; Acrobatidae). Can. J. Zool. 77, 1–16 (1999). doi:10.1139/z98-212CrossRefGoogle Scholar
  5. 5.
    Riskin, D.K., Racey, P.A.: How do sucker-footed bats hold on, and why do they roost head-up? Biol. J. Linn. Soc. 99, 233–240 (2010). doi:10.1111/j.1095-8312.2009.01362.xCrossRefGoogle Scholar
  6. 6.
    Barnes, W.J.P.: Functional morphology and design constraints of smooth adhesive pads. MRS Bull. 32, 479–485 (2007). doi:10.1557/mrs2007.81CrossRefGoogle Scholar
  7. 7.
    Peattie, A.M., Dirks, J.-H., Henriques, S., Federle, W.: Arachnids secrete a fluid over their adhesive pads. PLoS One 6(5), e20485 (2011). doi:10.1371/journal.pone.0020485CrossRefGoogle Scholar
  8. 8.
    Jiao, Y., Gorb, S., Scherge, M.: Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J. Exp. Biol. 203, 1887–1895 (2000)Google Scholar
  9. 9.
    Federle, W., Barnes, W.J.P., Baumgartner, W., Drechsler, P., Smith, J.: Wet but not slippery: boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 3(10), 689–697 (2006). doi:10.1098/rsif.2006.0135CrossRefGoogle Scholar
  10. 10.
    Green, D.M.: Treefrog toe pads: comparative surface morphology using scanning electron microscopy. Can. J. Zool. 57, 2033–2046 (1979). doi:10.1139/z79-268CrossRefGoogle Scholar
  11. 11.
    Emerson, S., Diehl, D.: Toe pad morphology and mechanisms of sticking in frogs. Biol. J. Linn. Soc. 13(3), 199–216 (1980). doi:10.1111/j.1095-8312.1980.tb00082.xCrossRefGoogle Scholar
  12. 12.
    Smith, J.M., Barnes, W.J.P., Downie, J.R., Ruxton, G.D.: Structural correlates of increased adhesive efficiency with adult size in the toe pads of hylid tree frogs. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192(11), 1193–1204 (2006). doi:10.1007/ s00359-006-0151-4CrossRefGoogle Scholar
  13. 13.
    Persson, B.N.J.: Wet adhesion with application to tree frog adhesive toe pads and tires. J. Phys. Condens. Matter 19(37), 376110 (2007). doi:10.1088/0953-8984/19/37/376110CrossRefGoogle Scholar
  14. 14.
    Ghatak, A., Mahadevan, L., Chung, J., Chaudhury, M., Shenoy, V.: Peeling from a biomimetically patterned thin elastic film. Proc. R. Soc. A Math. Phys. Eng. Sci. 460(2049), 2725–2735 (2004). doi:10.1098/rspa.2004.1313CrossRefGoogle Scholar
  15. 15.
    Scholz, I., Barnes, W.J.P., Smith, J.M., Baumgartner, W.: Ultrastructure and physical properties of an adhesive surface, the toe pad epithelium of the tree frog, Litoria caerulea White. J. Exp. Biol. 212(2), 155–162 (2009). doi:10.1242/jeb.019232CrossRefGoogle Scholar
  16. 16.
    Green, D.M., Alberch, P.: Interdigital webbing and skin morphology in the neotropical salamander genus Bolitoglossa. J. Morphol. 170, 273–282 (1981). doi:10.1002/jmor.1051700302CrossRefGoogle Scholar
  17. 17.
    Barnes, W.J.P., Goodwyn, P., Nokhbatolfoghahai, M., Gorb, S.: Elastic modulus of tree frog adhesive toe pads. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 197, 969–978 (2011). doi:10.1007/s00359-011-0658-1CrossRefGoogle Scholar
  18. 18.
    Federle, W.: Why are so many adhesive pads hairy? J. Exp. Biol. 209(14), 2611–2621 (2006). doi:10.1242/jeb.02323CrossRefGoogle Scholar
  19. 19.
    Smith, J.M., Barnes, W.J.P., Downie, J.R., Ruxton, G.D.: Adhesion and allometry from metamorphosis to maturation in hylid tree frogs: a sticky problem. J. Zool. 270(2), 372–383 (2006). doi:10.1111/j.1469-7998.2006.00145.xGoogle Scholar
  20. 20.
    Barnes, W.J.P.: Dynamic adhesion in animals: mechanisms and biomimetic implications. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192(11), 1165–1168 (2006). doi:10.1007/s00359-006-0144-3CrossRefGoogle Scholar
  21. 21.
    Butt, H.-J., Barnes, W.J.P., del Campo, A., Kappl, M., Schonfeld, F.: Capillary forces between soft, elastic spheres. Soft Matter 6, 5930–5936 (2010). doi:10.1039/C0SM00455CCrossRefGoogle Scholar
  22. 22.
    Barnes, W.J.P., Oines, C., Smith, J.M.: Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192(11), 1179–1191 (2006). doi:10.1007/s00359-006-0146-1CrossRefGoogle Scholar
  23. 23.
    Arzt, E., Gorb, S., Spolenak, R.: From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. 100(19), 10603–10606 (2003). doi:10.1073/pnas.1534701100CrossRefGoogle Scholar
  24. 24.
    Crawford, N., Endlein, T., Barnes, W.J.P.: Self-cleaning in tree frog toe pads; a mechanism for recovering from contamination without the need for grooming. J. Exp. Biol. 215, 3965–3972 (2012). doi:10.1242/jeb.073809CrossRefGoogle Scholar
  25. 25.
    Endlein, T., Barnes, W.J.P., Samuel, D.S., Crawford, N.A., Biaw, A.B.., Grafe, U.: Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, Staurois guttatus. PLoS One 8(9), e73810 (2013). doi:10.1371/journal.pone.0073810CrossRefGoogle Scholar
  26. 26.
    Endlein, T., Ji, A., Samuel, D., Yao, N., Wang, Z., Barnes, W.J.P., Federle, W., Kappl, M., Dai, Z.: Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces. J. R. Soc. Interface 10(80), 20120838 (2013). doi:10.1098/rsif.2012.0838CrossRefGoogle Scholar
  27. 27.
    Majumder, A., Ghatak, A., Sharma, A.: Microfluidic adhesion induced by subsurface microstructures. Science 318(5848), 258–261 (2007). doi:10.1126/science.1145839CrossRefGoogle Scholar
  28. 28.
    Drotlef, D.-M., Stepien, L., Kappl, M., Barnes, W.J.P., Butt, H.-J., del Campo, A.: Insights into the adhesive mechanisms of tree-frogs using artificial mimics. Adv. Funct. Mater. 9, 1094 (2012). doi:10.1002/adfm.201202024Google Scholar
  29. 29.
    Varenberg, M., Gorb, S.N.: Hexagonal surface micropattern for dry and wet friction. Adv. Mater. 21(4), 483–486 (2009). doi:10.1002/adma.200802734CrossRefGoogle Scholar
  30. 30.
    Varenberg, M., Gorb, S.: Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force. J. R. Soc. Interface 4(15), 721–725 (2007). doi:10.1098/rsif.2007. 0222CrossRefGoogle Scholar
  31. 31.
    Shahsavan, H., Zhao, B.: Bioinspired functionally graded adhesive materials: synergetic interplay of top viscous–elastic layers with base micropillars. Macromolecules 47(1), 353–364 (2014). doi:10.1021/ ma4018718CrossRefGoogle Scholar
  32. 32.
    Gupta, R., Fréchette, J.: Measurement and scaling of hydrodynamic interactions in the presence of draining channels. Langmuir 28(41), 14703–14712 (2012). doi:10.1021/la303508xCrossRefGoogle Scholar
  33. 33.
    Barnes, W.J.P.: Tree frogs and tire technology. Tire. Technol. Int. 99, 42–47 (1999)Google Scholar
  34. 34.
    Barnes, J., Smith, J., Oines, C., Mundl, R.: Bionics and wet grip. Tire. Technol. Int. 56–60 (2002)Google Scholar
  35. 35.
    Vogel, M.J., Steen, P.H.: Capillarity-based switchable adhesion. Proc. Natl. Acad. Sci. 107(8), 3377–3381 (2010). doi:10.1073/pnas.0914720107CrossRefGoogle Scholar
  36. 36.
    Tsipenyuk, A., Varenberg, M.: Use of biomimetic hexagonal surface texture in friction against lubricated skin. J. R. Soc. Interface. 11(94), (2014). doi: 10.1098/rsif.2014.0113Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University of Glasgow, Institute of Molecular Cell and Systems Biology, Centre for Cell Engineering, Joseph Black BuildingUniversity AvenueGlasgowUnited Kingdom