Skip to main content

Nanophotonic Structures for Biosensing

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Nano-optical biosensors; Nano-optics biosensing

Definition

One-dimensional, two-dimensional, or three-dimensional structures made of suitable materials, having dimensions ranging from few nanometers to few hundreds of nanometers in size, and said structures showing a well-defined interaction with light providing an optical transduction mechanism for detecting/revealing specific biomolecules in close proximity to the structure itself.

Overview

Optical biosensors [1] constitute powerful detection and analysis tools with wide applications in the biomedical domain. They can provide parallel detection within a single device. Generally speaking, there are two detection methods that are implemented in optical biosensing: fluorescence-based detection and label-free detection. Thanks to the recent advances of technological capabilities for the fabrication of nanometer-sized structures, most of the conventional techniques can be improved, and new original techniques have become...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fan, X., White, I.M., Shopova, S.I., Zhu, H., Suter, J.D., Sun, Y.: Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 620, 8–26 (2008)

    Article  Google Scholar 

  2. Kneipp, K., Moskovits, M., Kneipp, H.: Surface Enhanced Raman Scattering. Springer, Heidelberg (2006)

    Book  Google Scholar 

  3. Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008)

    Article  Google Scholar 

  4. Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to waveguiding. Nano Lett. 1, 641–648 (2007)

    Google Scholar 

  5. Steidtner, J., Pettinger, B.: Tip-enhanced raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008)

    Article  Google Scholar 

  6. Sonntag, M.D., Pozzi, E.A., Jiang, N., Hersam, M.C., Van Duyne, R.P.: Recent advances in tip-enhanced raman spectroscopy. J. Phys. Chem. Lett. 5, 3125–3130 (2014)

    Article  Google Scholar 

  7. Osawa, M.: Surface-enhanced infrared absorption. In: Kawata, S. (ed.) Near-Field Optics and Surface Plasmon Polaritons. Springer, Heidelberg (2001)

    Google Scholar 

  8. Le Ru, E.C., Etchegoin, P.G.: Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier, Amsterdam (2009)

    Google Scholar 

  9. Yoa, K., Liu, Y.: Plasmonic metamaterials. Nanotechnol Rev 3(2), 177–210 (2014)

    Google Scholar 

  10. Zhang, C., Wen, X., Dodson, S.L., Dao, N.T., Wong, L.M., Wang, S., Li, S., Tu, A., Xiong, Q.: Metamaterials-based label-free nanosensor for conformation and affinity biosensing. ACS Nano 7(10), 7583–7591 (2013)

    Google Scholar 

  11. Homola, J.: Surface Plasmon Resonance Based Sensors. Springer, Berlin (2006)

    Book  Google Scholar 

  12. Konopsky, V.N., Alieva, E.V.: A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index. Biosens. Bioelectron. 25, 1212–1216 (2010)

    Article  Google Scholar 

  13. Zourob, M., Lakhatakia, A.: Optical Guided-Wave Chemical and Biosensor II. Springer, Heidelberg (2010)

    Book  Google Scholar 

  14. Wang, X.D., Wolfbeis, O.: Fiber optic chemical sensors and biosensors. Anal. Chem. 85(2), 487–508 (2013)

    Article  Google Scholar 

  15. le Coarer, E., et al.: Wavelength-scale stationary-wave integrated fourier-transform spectrometry. Nat. Photonics. 1, 473–478 (2007)

    Article  Google Scholar 

  16. Sciacca, B., Frascella, F., Venturello, A., Rivolo, P., Descrovi, E., Giorgis, F., Geobaldo, F.: Doubly resonant porous silicon microcavities for enhanced detection of fluorescent organic molecules. Sens. Actuators. B. 137, 467–470 (2009)

    Article  Google Scholar 

  17. Dorfner, D., Zabel, T., Hürlimann, T., Hauke, N., Frandsen, L., Rant, U., Abstreiter, G., Finley, J.: Photonic crystal nanostructures for optical biosensing applications. Biosens. Bioelectron. 24, 3688–3692 (2009)

    Article  Google Scholar 

  18. Frascella, F., Ricciardi, S., Pasquardini, L., Potrich, C., Angelini, A., Chiadò, A., Pederzolli, C., De Leo, N., Rivolo, P., Pirri, C.F., Descrovi, E.: Enhanced fluorescence detection of miRNA-16 on a photonic crystal. Analyst 140, 5459–5463 (2015)

    Article  Google Scholar 

  19. Shafiee, H., Lidstone, E.A., Jahangir, M., Inci, F., Hanhauser, E., Henrich, T.J., Kuritzkes, D.R., Cunningham, B.T., Demirci, U.: Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Sci. Rep. 4, 4116 (2014). 1–7

    Article  Google Scholar 

  20. Lakowicz, J.R., et al.: Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133, 1308–1346 (2008)

    Article  Google Scholar 

  21. Ming, T., Chen, H., Jiang, R., Li, Q., Wang, J.: Plasmon-controlled fluorescence: Beyond the intensity enhancement. J. Phys. Chem. Lett. 3(2), 191–202 (2012)

    Article  Google Scholar 

  22. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York (2006)

    Book  Google Scholar 

  23. Burns, A., Ow, H., Wiesner, U.: Fluorescent core–shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem. Soc. Rev. 35, 1028–1042 (2006)

    Article  Google Scholar 

  24. Viste, P., Plain, J., Jaffiol, R., Vial, A., Adam, P.M., Royer, P.: Enhancement and quenching regimes in metal–semiconductor hybrid optical nanosources. ACS Nano 4, 759–764 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Descrovi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Descrovi, E., Frascella, F. (2015). Nanophotonic Structures for Biosensing. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_241-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_241-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics