Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nanostructures for Coloration (Organisms Other Than Animals)

  • Ille C. Gebeshuber
  • David W. Lee
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_216-2

Synonyms

Definition

Structural colors refer to colors generated by minuscule structures, with the characteristic dimension of the structures on the order of the wavelength of the visible light (i.e., some tens up to hundreds of nanometers). Examples for structural colors are the colors of CDs and DVDs, the colors of soap bubbles or oil films on water (thin films), or the colors of certain butterfly wings (e.g., photonic crystals) and even plants. Tiny wax crystals in the blue spruce scatter the light (Tyndall scattering), resulting in the blue hue. Thin films in tropical understory plants and diffraction gratings in hibiscus and tulip flowers are just some more examples of the amazing variety of natural nanostructures that are the basis for coloration in some plants. This entry reviews the physics behind structural colors; lists plants, microorganisms, and virus species with nanostructures responsible...

Keywords

Photonic Crystal Structural Color Slime Mold Diffraction Grating Cholesteric Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Lee, D.: Nature’s Palette: The Science of Plant Color. University of Chicago Press, Chicago (2007)CrossRefGoogle Scholar
  2. 2.
    Berthier, S.: Iridescences: The Physical Colors of Insects. Springer, New York (2007)Google Scholar
  3. 3.
    Kinoshita, S.: Structural Colors in the Realm of Nature. World Scientific Publishing Company, Singapore (2008)CrossRefGoogle Scholar
  4. 4.
    Vukusic, P., Sambles, J.R.: Photonic structures in biology. Nature 424, 852–855 (2003)CrossRefGoogle Scholar
  5. 5.
    Whitney, H.M., Kolle, M., Andrew, P., Chittka, L., Steiner, U., Glover, B.J.: Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323(1), 130–133 (2009)CrossRefGoogle Scholar
  6. 6.
    Martin, J.T., Juniper, B.E.: The Cuticles of Plants, p. 109. Edward Arnold, Edinburgh (1970)Google Scholar
  7. 7.
    Eckert, A.W.: The World of Opals, pp. 16 and 183. Wiley, New York (1997)Google Scholar
  8. 8.
    de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. The International Series of Monographs on Physics. Oxford University Press, Oxford (1995)Google Scholar
  9. 9.
    Williams, T.: The Iridoviruses. Adv. Vir. Res. 46, 345–412 (1996)CrossRefGoogle Scholar
  10. 10.
    Gentner, G.: Über den Blauglanz auf Blättern und Früchten. Flora Bot Zeitung 99(4), 337–354 (1909) (in German)Google Scholar
  11. 11.
    Mohl, H. v: Über die blaue Färbung der Früchte von Viburnum tinus. Flora Bot. Zeitung 27 (1870) (in German)Google Scholar
  12. 12.
    Lee, D.W., Lowry, J.B.: Physical basis and ecological significance of iridescence in blue plants. Nature 254, 50–51 (1975)CrossRefGoogle Scholar
  13. 13.
    Glover, B.J., Whitney, H.M.: Structural colour and iridescence in plants: the poorly studied relations of pigment colour. Ann. Bot. 105(4), 505–511 (2010)CrossRefGoogle Scholar
  14. 14.
    Inchaussandague, M., Skigin, D., Carmaran, C., Rosenfeldt, S.: Structural color in myxomycetes. Opt. Express 18(15), 16055–16063 (2010)CrossRefGoogle Scholar
  15. 15.
    Diah, S.Z.M., Karman, S.B., Gebeshuber, I.C.: Nanostructural colouration in Malaysian plants: lessons for biomimetics and biomaterials. J. Nanomater. 2014, Article ID 878409(15p) (2014)Google Scholar
  16. 16.
    Gould, K.S., Lee D.W.: Physical and ultrastructural basis of blue leaf iridescence in four Malaysian understory plants. Am. J. Bot. 83(1), 45–50 (1996)Google Scholar
  17. 17.
    Gerwick, W.H., Lang, N.J.: Structural, chemical and ecological studies on iridescence in Iridaea (Rhodophyta). J. Phycol. 13(2), 121–127 (1977)CrossRefGoogle Scholar
  18. 18.
    Pedersén, M., Roomans, G.M., Hosten, A.V.: Blue iridescence and bromine in the cuticle of the red alga Chondrus crispus Stackh. Bot. Mar. 23, 193–196 (1980)Google Scholar
  19. 19.
    Dragota, S., Riederer, M.: Epicuticular wax crystals of Wollemia nobilis: morphology and chemical composition. Ann. Bot. 100, 225–231 (2007)CrossRefGoogle Scholar
  20. 20.
    Koch, K., Barthlott, W.: Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil. Trans. R. Soc. A 367(1893), 1487–1509 (2009)CrossRefGoogle Scholar
  21. 21.
    Vigneron, J.P., Rassart, M., Vértesy, Z., Kertész, K., Sarrazin, M., Biró, L.P., Ertz, D., Lousse, V.: Optical structure and function of the white filamentary hair covering the edelweiss bracts. Phys. Rev. E 71(8p), 011906 (2005)CrossRefGoogle Scholar
  22. 22.
    Hemsley, A.R., Collinson, M.E., Kovach, W.L., Vincent, B., Williams, T.: The role of self-assembly in biological systems: evidence from iridescent colloidal sporopollenin in Selaginella megaspore walls. Phil. Trans. R. Soc. Lond. B 345, 163–173 (1994)CrossRefGoogle Scholar
  23. 23.
    Willis, D.B. (ed.): Iridoviridae. Current Topics in Microbiology and Immunology, vol. 116. Springer, Berlin/Heidelberg/New York/Tokyo (1985)Google Scholar
  24. 24.
    Gruber, P., Bruckner, D., Hellmich, C., Schmiedmayer, H.-B., Stachelberger, H., Gebeshuber, I.C. (eds.): Biomimetics – Materials, Structures and Processes. Examples, Ideas and Case Studies. Springer, Berlin (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Applied PhysicsVienna University of TechnologyWienAustria
  2. 2.Department of Biological SciencesFlorida International University Modesto Maidique CampusMiamiUSA