Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nanoengineered Concrete

  • Konstantin Sobolev
  • Florence Sanchez
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_214-2



What Is Nano-concrete?

Portland cement concrete is a complex nanostructured, multiphase, multiscale composite material that evolves over time [ 1, 2]. The elementary block calcium-silicate-hydrate (C-S-H), which holds the concrete composite together, is also a nanostructured material (Fig. 1) [ 3]. The properties of concrete exist in multiple length scales (nano to micro to macro). Processes occurring at the nanoscale ultimately affect the engineering properties and long-term performance of concrete [ 2].


Compressive Strength Portland Cement Cement Paste Colloidal Silica Recycle Aggregate Concrete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Sobolev, K., Ferrada-Gutiérrez, M.: How nanotechnology can change the concrete world: part 2. Am. Ceram. Soc. Bull. 11, 16–19 (2005)Google Scholar
  2. 2.
    Sanchez, F., Sobolev, K.: Nanotechnology in concrete – a review. Constr. Build. Mater. 24(11), 2060–2071 (2010)CrossRefGoogle Scholar
  3. 3.
    Plassard, C., Lesniewska, E., Pochard, I., Nonat, A.: Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale. Ultramicroscopy 100(3–4), 331–338 (2004)CrossRefGoogle Scholar
  4. 4.
    Scrivener, K.L.: Nanotechnology and cementitious materials. In: Bittnar, Z., Bartos, P.J.M., Nemecek, J., Smilauer, V., Zeman, J. (eds.) Nanotechnology in Construction: Proceedings of the NICOM3, 3rd International Symposium on Nanotechnology in Construction, pp. 37–42. Prague (2009)Google Scholar
  5. 5.
    Bhushan, B. (ed.): Handbook of Nanotechnology. Springer, Berlin (2004)Google Scholar
  6. 6.
    Atkinson, W.I.: Nanocosm – Nanotechnology and the Big Changes Coming from the Inconceivably Small, pp. 36–39. AMACOM, New York (2003)Google Scholar
  7. 7.
    Wilson, M., Smith, K.K.G., Simmons, M., Raguse, B.: Nanotechnology – Basic Science and Emerging Technologies. Chapman and Hall/CRC, Boca Raton/London (2000)Google Scholar
  8. 8.
    Mart, J., Mijangos, C.: Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir 25(2), 1181–1187 (2009)CrossRefGoogle Scholar
  9. 9.
    Dalton, A.B.., Collins, S., Razal, S.J., Munoz, E., Ebron, V.H., Kim, B.G., Coleman, J.N., Ferraris, J.P., Baughman, R.H.: Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J. Mater. Chem. 14, 1–3 (2004)CrossRefGoogle Scholar
  10. 10.
    Trtik, P., Bartos, P.J.M.: Nanotechnology and concrete: what can we utilise from the upcoming technologies? In: Proceeding of the 2nd Anna Maria Workshop: Cement & Concrete: Trends & Challenges, pp. 109–120. Holmes Beach (2001)Google Scholar
  11. 11.
    Beaudoin, J.J.: Why engineers need materials science. Concr. Int. 21(8), 86–89 (1999)Google Scholar
  12. 12.
    Watanabe, T., Kojima, E., Norimoto, K., Kimura, T., Machida, M., Hayakawa, M., Kitamura, A., Chikuni, M., Saeki, Y., Kuga, T., Nakashima, Y.: Multi-functional material with photocatalytic functions and method of manufacturing same. US Patent US6294247 (2001)Google Scholar
  13. 13.
    Corradi, M., Khurana, R., Magarotto, R.: Controlling performance in ready mixed concrete. Concr. Int. 26(8), 123–126 (2004)Google Scholar
  14. 14.
    Collepardi, M., Ogoumah-Olagot, J.J., Skarp, U., Troli, R.: Influence of amorphous colloidal silica on the properties of self-compacting concretes. In: Proceedings of the International Conference, Challenges in Concrete Construction – Innovations and Developments in Concrete Materials and Construction, pp. 473–483. Dundee (2002)Google Scholar
  15. 15.
    Flores, I., Sobolev, K., Torres, L.M., Valdez, P.L., Zarazua, E., Cuellar, E.L.: Performance of cement systems with Nano- SiO2 particles produced using sol-gel method. In: TRB First International Conference in North America on Nanotechnology in Cement and Concrete. Irvine (2010)Google Scholar
  16. 16.
    Porro, A., Dolado, J.S., Campillo, I., Erkizia, E., de Miguel, Y., Sáez de Ibarra, Y., Ayuela, A.: Effects of nanosilica additions on cement pastes. In: Ravindra, R.K., Dhir, K., Newlands, M.D., Csetenyi, L.J. (eds.) Applications of Nanotechnology in Concrete Design. Thomas Telford, London (2005)Google Scholar
  17. 17.
    Bjornstrom, J., Martinelli, A., Matic, A., Borjesson, L., Panas, I.: Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chem. Phys. Lett. 392(1–3), 242–248 (2004)CrossRefGoogle Scholar
  18. 18.
    Qing, Y., Zenan, Z., Deyu, K., Rongshen, C.: Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21(3), 539–545 (2007)CrossRefGoogle Scholar
  19. 19.
    Li, G.: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. 34, 1043–1049 (2004)CrossRefGoogle Scholar
  20. 20.
    Hosseini, P.B., Booshehrian, A., Delkash, M., Ghavami, S., Zanjani, M.K.: Use of nano-SiO2 to improve microstructure and compressive strength of recycled aggregate concretes. In: NICOM3, 3rd International Symposium on Nanotechnology in Construction. Prague (2009)Google Scholar
  21. 21.
    Cassar, L., Pepe, C., Tognon, G., Guerrini, G.L., Amadelli, R.: White cement for architectural concrete possessing photocatalytic properties. In: Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), p. 2012. Durban (2003)Google Scholar
  22. 22.
    Sanchez, F.: Carbon nanofiber/cement composites: challenges and promises as structural materials. Int. J. Mater. Struct. Integr. 3(2–3), 217–226 (2009). Special issue on nanotechnology for structural materialsCrossRefGoogle Scholar
  23. 23.
    Makar, J.M., Margeson, J., Luh, J.: Carbon nanotube/cement composites – early results and potential applications. In: Proceedings of 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, p. 1–10. Vancouver (2005)Google Scholar
  24. 24.
    Shah, S.P., Konsta-Gdoutos, M.S., Metaxa, Z.S., Mondal, P.: Nanoscale modification of cementitious materials. In: Bittnar, Z., Bartos, P.J.M., Nemecek, J., Smilauer, V., Zeman, J. (eds.) Nanotechnology in Construction: Proceedings of the NICOM3, 3rd International Symposium on Nanotechnology in Construction, pp. 125–130. Prague (2009)Google Scholar
  25. 25.
    Gay, C., Sanchez, F.: Performance of carbon nanofibers/cementitious composites with a high-range water-reducer. J. Transport. Res. Board 2142, 109–113 (2010). Nanotechnology in Cement and Concrete, volume 2CrossRefGoogle Scholar
  26. 26.
    Sanchez, F., Ince, C.: Microstructure and macroscopic properties of hybrid carbon nanofibers/silica fume cement composites. Compos. Sci. Technol. 69(7–8), 1310–1318 (2009)CrossRefGoogle Scholar
  27. 27.
    Pyrograf-III carbon nanofiber. http://pyrografproducts.com/Merchant5/merchant.mvc?Screen=cp_nanofiber. Accessed 25 May 2011
  28. 28.
    Chung, D.: Piezoresistive cement-based materials for strain sensing. J. Intell. Mater. Syst. Struct. 13(9), 599–609 (2002)CrossRefGoogle Scholar
  29. 29.
    Li, H., Xiao, H.G., Ou, J.P.: A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem. Concr. Res. 34, 435–438 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Civil Engineering and MechanicsUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of Civil and Environmental EngineeringVanderbilt UniversityNashvilleUSA