Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Microcantilever Chemical and Biological Sensors

  • Hashem Etayash
  • Thomas Thundat
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_187-2

Definition

Advanced sensing techniques are currently being developed so that quick and accurate detection of chemical and biological analytes can be obtained. Among those techniques, microcantilever Array sensors, have attracted considerable attention as a result of their potential as highly sensitive platforms for real-time, high-throughput, and multiplexed detection of a myriad of chemical and biological analytes. Microcantilevers are microscale beams which are anchored at one end. Molecular adsorption on a cantilever surface can generate bending as a result of adsorption-induced changes in surface stress. In addition, mass loading due to molecular adsorption results in changes in the resonance frequency of the cantilever. Chemical/biological selectivity can be achieved via immobilized receptors on the cantilever surface. The microcantilever array platform has the potential for application in many areas such as monitoring of water quality, chemical analysis, detection of food...

Keywords

Surface Stress Molecular Adsorption Multiplex Detection Alkane Thiol Cantilever Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Farahi, R.H., Passian, A., Tetard, L., Thundat, T.: Critical issues in sensor science to aid food and water safety. ACS Nano 6, 4548–4556 (2012)CrossRefGoogle Scholar
  2. 2.
    Huber, F., Lang, H.P., Backmann, N., Rimoldi, D., Gerber, C.: Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nat. Nanotechnol. 8, 125–129 (2013)CrossRefGoogle Scholar
  3. 3.
    Scallan, E., et al.: Foodborne illness acquired in the United States – major pathogens. Emerg. Infect. Dis. 17, 7–15 (2011)CrossRefGoogle Scholar
  4. 4.
    Fakruddin, M., Mannan, K.S., Andrews, S.: Viable but nonculturable bacteria: food safety and public health perspective. ISRN Microbiol. 2013, 703813 (2013)CrossRefGoogle Scholar
  5. 5.
    Utzinger, J., et al.: Microscopic diagnosis of sodium acetate-acetic acid-formalin-fixed stool samples for helminths and intestinal protozoa: a comparison among European reference laboratories. Clin. Microbiol. Infect. 16, 267–273 (2010)CrossRefGoogle Scholar
  6. 6.
    Sorgenfrei, S., et al.: Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 126–132 (2011)CrossRefGoogle Scholar
  7. 7.
    Puard, V., et al.: Semi-quantitative measurement of specific proteins in human cumulus cells using reverse phase protein array. Reprod. Biol. Endocrinol. 11, 100 (2013)CrossRefGoogle Scholar
  8. 8.
    Ampil, F.L.,Caldito, G. Patient-provider delays in superior vena caval obstruction of lung cancer and outcomes. Am. J. Hosp. Palliat. Care (2013).Google Scholar
  9. 9.
    van der Waal, I.: Are we able to reduce the mortality and morbidity of oral cancer; some considerations. Med. Oral Patol. Oral Cir. Bucal 18, e33–e37 (2013)CrossRefGoogle Scholar
  10. 10.
    Justino, C.I., Rocha-Santos, T.A., Duarte, A.C.: Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends Anal. Chem. 29, 1172–1183 (2010)CrossRefGoogle Scholar
  11. 11.
    Wu, G., et al.: Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19, 856–860 (2001)CrossRefGoogle Scholar
  12. 12.
    Zemp, R.J.: Nanomedicine: detecting rare cancer cells. Nat. Nanotechnol. 4, 798–799 (2009)CrossRefGoogle Scholar
  13. 13.
    Rajmohan Joshi, R.M.J.: Biosensors. Isha Books, New Delhi (2006)Google Scholar
  14. 14.
    Sadana, A.: Biosensors: Kinetics of Binding and Dissociation Using Fractals. Elsevier, Amsterdam/Boston (2003)Google Scholar
  15. 15.
    Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)CrossRefGoogle Scholar
  16. 16.
    Thundat, T., Zheng, X.-Y., Chen, G., Warmack, R.: Role of relative humidity in atomic force microscopy imaging. Surf. Sci. 294, L939–L943 (1993)CrossRefGoogle Scholar
  17. 17.
    Thundat, T., et al.: Atomic force microscopy of DNA on mica and chemically modified mica. Scanning Microsc. 6, 911 (1992)Google Scholar
  18. 18.
    Xu, X., Thundat, T.G., Brown, G.M., Ji, H.-F.: Detection of Hg2+ using microcantilever sensors. Anal. Chem. 74, 3611–3615 (2002)CrossRefGoogle Scholar
  19. 19.
    Mertens, J., et al.: Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat. Nanotechnol. 3, 301–307 (2008)CrossRefGoogle Scholar
  20. 20.
    Wu, G., et al.: Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. U. S. A. A98, 1560–1564 (2001)CrossRefGoogle Scholar
  21. 21.
    McKendry, R., et al.: Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl. Acad. Sci. U. S. A. A99, 9783–9788 (2002)CrossRefGoogle Scholar
  22. 22.
    Braun, T., et al.: Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nat. Nanotechnol. 4, 179–185 (2009)CrossRefGoogle Scholar
  23. 23.
    Rijal, K., Mutharasan, R.: A method for DNA-based detection of E. coli O157:H7 in a proteinous background using piezoelectric-excited cantilever sensors. Analyst 138, 2943–2950 (2013)CrossRefGoogle Scholar
  24. 24.
    Maraldo, D., Mutharasan, R.: 10-minute assay for detecting Escherichia coli O157:H7 in ground beef samples using piezoelectric-excited millimeter-size cantilever sensors. J. Food Prot. 70, 1670–1677 (2007)Google Scholar
  25. 25.
    Waggoner, P.S., Craighead, H.G.: Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab Chip 7, 1238–1255 (2007)CrossRefGoogle Scholar
  26. 26.
    Cherian, S., Gupta, R.K., Mullin, B.C., Thundat, T.: Detection of heavy metal ions using protein-functionalized microcantilever sensors. Biosens. Bioelectron. 19, 411–416 (2003)CrossRefGoogle Scholar
  27. 27.
    Nordström, M., et al.: SU-8 Cantilevers for bio/chemical sensing; fabrication, characterisation and development of novel read-out methods. Sensors 8, 1595–1612 (2008)CrossRefGoogle Scholar
  28. 28.
    Ding, C., Zhu, A.,Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. (2013)Google Scholar
  29. 29.
    Martínez, M.T., et al.: Label-Free DNA Biosensors Based on Functionalized Carbon Nanotube Field Effect Transistors. Nano Lett. 9, 530–536 (2009)CrossRefGoogle Scholar
  30. 30.
    Letant, S.E., Hart, B.R., Van Buuren, A.W., Terminello, L.J.: Functionalized silicon membranes for selective bio-organism capture. Nat. Mater. 2, 391–395 (2003)CrossRefGoogle Scholar
  31. 31.
    Zimmermann, J.L., Nicolaus, T., Neuert, G., Blank, K.: Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat. Protoc. 5, 975–985 (2010)CrossRefGoogle Scholar
  32. 32.
    Buchapudi, K.R., Huang, X., Yang, X., Ji, H.F., Thundat, T.: Microcantilever biosensors for chemicals and bioorganisms. Analyst 136, 1539–1556 (2011)CrossRefGoogle Scholar
  33. 33.
    Zhang, J., et al.: Development of robust and standardized cantilever sensors based on biotin/NeutrAvidin coupling for antibody detection. Sensors (Basel) 13, 5273–5285 (2013)CrossRefGoogle Scholar
  34. 34.
    Hansen, K.M., et al.: Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal. Chem. 73, 1567–1571 (2001)CrossRefGoogle Scholar
  35. 35.
    Oliver, P.M., Park, J.S., Vezenov, D.: Quantitative high-resolution sensing of DNA hybridization using magnetic tweezers with evanescent illumination. Nanoscale 3, 581–591 (2011)CrossRefGoogle Scholar
  36. 36.
    Fritz, J., et al.: Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000)CrossRefGoogle Scholar
  37. 37.
    Savran, C.A., Knudsen, S.M., Ellington, A.D., Manalis, S.R.: Micromechanical detection of proteins using aptamer-based receptor molecules. Anal. Chem. 76, 3194–3198 (2004)CrossRefGoogle Scholar
  38. 38.
    Sharma, H., Mutharasan, R.: hlyA gene-based sensitive detection of Listeria monocytogenes using a novel cantilever sensor. Anal. Chem. 85, 3222–3228 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University of AlbertaEdmontonCanada