Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Organic Actuators

  • Yuyun Liu
  • Yanlei Yu
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_13-2



Organic actuators are energy transducers that are made of organic materials such as stimuli-responsive gels or polymers and able to act upon their external environment by converting input energy into mechanical work.


Organic actuators have shown their considerable potential for the applications in medical devices, prostheses, robotics, toys, biomimetic devices, and micro/nanoelectromechanical systems. Compared to conventional metallic and ceramic actuators, the advantages of organic actuators are flexibility, light weight, low cost, and quiet operation compliance. Many actuators that respond to various external stimuli have been developed using polymers as base materials: polymer gels, cross-linked liquid crystal polymers, conducting polymers, and shape memory polymers. As Fig. 1shows, the promise of developing organic actuators has inspired scientists for decades and led to the design and operation of polymers that exhibit mechanically...


Liquid Crystal Liquid Crystal Phase Liquid Crystal Molecule Shape Memory Polymer Temporary Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Ikeda, T., Nakano, M., Yu, Y.L., Kanazawa, A.: Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater. 13, 201–205 (2003)CrossRefGoogle Scholar
  2. 2.
    Yao, X., Dunn, S., Kim, P.: Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties. Angew. Chem. Int. Ed. 53, 4418–4422 (2014)CrossRefGoogle Scholar
  3. 3.
    Sawa, Y., Ye, F.F., Urayama, K.: Shape selection of twist-nematic-elastomer ribbons. PNAS. 108, 6364–6368 (2011)CrossRefGoogle Scholar
  4. 4.
    Maeda, S., Hara, Y., Sakai, T.: Self-walking gel. Adv. Mater. 19, 3480–3484 (2007)CrossRefGoogle Scholar
  5. 5.
    Jaehwan, K., Jin-Han, J., Hyun-Jun, K.: Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano. 8, 2986–2997 (2014)CrossRefGoogle Scholar
  6. 6.
    Wei, J., Yu, Y.L.: Photodeformable polymer gels and crosslinked liquid-crystalline polymers. Soft Matter. 8, 8050–8059 (2012)CrossRefGoogle Scholar
  7. 7.
    Islam, M.R., Li, X., Smyth, K., Serpe, M.J.: Polymer-based muscle expansion and contraction. Angew. Chem. Int. Ed. 52, 10330–10333 (2013)CrossRefGoogle Scholar
  8. 8.
    Takashima, Y., Hatanaka, S., Otsubo, M.: Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 3, 1270–1278 (2012)CrossRefGoogle Scholar
  9. 9.
    Behl, B.M., Razzaq, M.Y., Lendlein, A.: Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)CrossRefGoogle Scholar
  10. 10.
    Xie, T.: Tunable polymer multi-shape memory effect. Nature 464, 267–270 (2010)CrossRefGoogle Scholar
  11. 11.
    Luo, Y.W., Gao, X., Xie, T.: A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv. Mater. 25, 743–748 (2013)CrossRefGoogle Scholar
  12. 12.
    De Gennes, P.G.: Physique moleculaire. C. R. Acad. Sci. B. 281, 101–103 (1975)Google Scholar
  13. 13.
    Wu, Z.L., Buguin, A., Keller, P.: Microstructured nematic liquid crystalline elastomer surfaces with switchable wetting properties. Adv. Funct. Mater. 23, 3070–3076 (2013)CrossRefGoogle Scholar
  14. 14.
    Fleischmann, E., Zentel, R.: One-piece micropumps from liquid crystalline core-shell particles. Nat. Commun. 3, 1178–1186 (2012)CrossRefGoogle Scholar
  15. 15.
    Pei, Z.Q., Terentjev, E.M., Ji, Y.: Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 13, 36–41 (2014)CrossRefGoogle Scholar
  16. 16.
    Finkelmann, H., Nishikawa, E.: A new opto-mechanical effect in solids. Phys. Rev. Lett. 87, 15501–15504 (2001)CrossRefGoogle Scholar
  17. 17.
    Yu, Y.L., Nakano, M., Ikeda, T.: Directed bending of a polymer film by light. Nature 425, 145–145 (2003)CrossRefGoogle Scholar
  18. 18.
    Yamada, M., Yu, Y.L., Ikeda, T.: Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008)CrossRefGoogle Scholar
  19. 19.
    Chen, M.L., Zhu, Y.T., Yu, Y.L.: Photodeformable polymer material: towards light-driven micropump applications. Appl. Phys. A. 100, 39–43 (2010)CrossRefGoogle Scholar
  20. 20.
    Chen, M.L., Zhu, Y.T., Yu, Y.L.: Photodeformable CLCP material: study on photo-activated microvalve applications. Appl. Phys. A. 102, 667–672 (2011)CrossRefGoogle Scholar
  21. 21.
    Li, C., Cheng, F.T., Yu, Y.L.: Light-controlled quick switch of adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film. Soft Matter. 8, 3730–3733 (2012)CrossRefGoogle Scholar
  22. 22.
    Yan, Z., Ji, X.M., Yu, Y.L.: Light-switchable behavior of a microarray of azobenzene liquid crystal polymer induced by photodeformation. Macromol. Rapid Commun. 33, 1362–1367 (2012)CrossRefGoogle Scholar
  23. 23.
    Yin, R.Y., Yu, Y.L., Ikeda, T.: Can sunlight driven the photoinduced bending of polymer films? J. Mater. Chem. 19, 3141–3143 (2009)CrossRefGoogle Scholar
  24. 24.
    Cheng, F.T., Yin, R.Y., Yu, Y.L.: Fully plastic microrobots which manipulate objects using only visible light. Soft Matter. 6, 3447–3449 (2010)CrossRefGoogle Scholar
  25. 25.
    Wu, W., Li, F.Y., Yu, Y.L.: NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J. Am. Chem. Soc. 133, 15810–15813 (2011)CrossRefGoogle Scholar
  26. 26.
    Jiang, Z., Xu, M., Yu, Y.L.: Red-light controllable liquid crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation. J. Am. Chem. Soc. 135, 16446–16453 (2013)CrossRefGoogle Scholar
  27. 27.
    Van Oosten, C.L., Bastiaansen, C.W.M., Broer, D.J.: Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8, 667–682 (2009)Google Scholar
  28. 28.
    Iamsaard, S., Fletcher, S.P., Katsonis, N.: Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014)CrossRefGoogle Scholar
  29. 29.
    Bar-Cohen, Y., Zhang, Q.M.: Electroactive polymer actuators and sensors. MRS Bulletin. 33, 173–180 (2008)CrossRefGoogle Scholar
  30. 30.
    Romero, I.S., Bradshaw, N.P., Murphy, A.R.: Biocompatible electromechanical actuators composed of silk-conducting polymer composites. Adv. Fun. Mater. 24, 3866–3873 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghaiChina