Skip to main content

AC Electroosmosis: Basics and Lab-on-a-Chip Applications

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Induced charge electroosmosis

Definition

Microelectrode structures subjected to AC voltages can generate flow of aqueous solutions by the action of the AC field on the charges induced by itself at the electrode-electrolyte interface, i.e., induced charges in the electrical double layer (EDL). The phenomenon is called AC electroosmosis (ACEO) in analogy with the “classical” electroosmosis, where fluid flow is generated by the action of an applied electric field on the mobile charge of a given solid-liquid interface [1]. The main difference is that the applied field in ACEO is responsible for both inducing the charge and pulling on it. The term induced-charge electrokinetics (ICEK) has been proposed to refer to all phenomena where the electric field acts on the electrical double layer induced by itself [2].

Basic Mechanism

Possibly, the simplest system for the study of AC electroosmosis consists of a couple of coplanar electrodes covered by an aqueous electrolyte. The electrodes...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: AC electric-field-induced fluid flow in microelectrodes. J. Colloids Interface Sci. 217, 420–422 (1999)

    Article  Google Scholar 

  2. Bazant, M.Z., Squires, T.M.: Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92, 066101 (2004)

    Article  Google Scholar 

  3. Green, N.G., Ramos, A., González, A., Morgan, H., Castellanos, A.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Experimental measurements. Phys. Rev. E 61, 4011–4018 (2000)

    Article  Google Scholar 

  4. González, A., Ramos, A., Green, N.G., Castellanos, A., Morgan, H.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys. Rev. E 61, 4019–4028 (2000)

    Article  Google Scholar 

  5. Green, N.G., Ramos, A., González, A., Morgan, H., Castellanos, A.: Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observations of streamlines and numerical simulation. Phys. Rev. E 66, 026305 (2002)

    Article  Google Scholar 

  6. Bazant, M.Z., Kilic, M.S., Storey, B.D., Ajdari, A.: Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152, 48–88 (2009)

    Article  Google Scholar 

  7. González, A., Ramos, A., García-Sánchez, P., Castellanos, A.: Effect of the combined action of Faradaic currents and mobility differences in ac electro-osmosis. Phys. Rev. E 81, 016320 (2010)

    Article  Google Scholar 

  8. Pascall, A.J., Squires, T.M.: Induced charge electro-osmosis over controllably contaminated electrodes. Phys. Rev. Lett. 104, 088301 (2010)

    Article  Google Scholar 

  9. Suh, Y.K., Kang, S.: Numerical prediction of ac electro-osmotic flows around polarized electrodes. Phys. Rev. E 79(4), 046309 (2009)

    Article  Google Scholar 

  10. Ajdari, A.: Pumping liquids using asymmetric electrode arrays. Phys. Rev. E 61, R45–R48 (2000)

    Article  Google Scholar 

  11. Brown, A.B..D., Smith, C.G., Rennie, A.R.: Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. Phys. Rev. E 63, 016305 (2000)

    Google Scholar 

  12. Ramos, A., González, A., Castellanos, A., Green, N.G., Morgan, H.: Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys. Rev. E 67, 056302 (2003)

    Article  Google Scholar 

  13. Huang, C., Bazant, M.Z., Thorsen, T.: Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics. Lab Chip 10, 80–85 (2010)

    Article  Google Scholar 

  14. Cahill, B.P., Heyderman, L.J., Gobrecht, J., Stemmer, A.: Electro-osmotic streaming on application of traveling-wave electric fields. Phys. Rev. E 70, 036305 (2004)

    Article  Google Scholar 

  15. Ramos, A., Morgan, H., Green, N.G., González, A., Castellanos, A.: Pumping of liquids with traveling-wave electroosmosis. J. Appl. Phys. 97, 084906 (2005)

    Article  Google Scholar 

  16. García-Sánchez, P., Ramos, A., Green, N.G., Morgan, H.: Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. IEEE Trans. Dielectr. Electr. Insul. 13, 670–677 (2006)

    Article  Google Scholar 

  17. Harnett, C.K., Templeton, J., Dunphy-Guzman, K.A., Sensousy, Y.M., Kanouff, M.P.: Model based design of a microfluidic mixer driven by induced charge electroomosis. Lab Chip 8, 565–572 (2008)

    Article  Google Scholar 

  18. Sasaki, N., Kitamori, T., Kim, H.B.: AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip 6(4), 550–554 (2006)

    Article  Google Scholar 

  19. Wong, P.K., Chen, C.Y., Wang, T.H., Ho, C.M.: Electrokinetic bioprocessor for concentrating cells and molecules. Anal. Chem. 76, 6908–6914 (2004)

    Article  Google Scholar 

  20. Lei, K.F., Cheng, H., Choy, K.Y., Chow, L.: Electrokinetic DNA concentration in microsystems. Sensors Actuators A: Phys. 156, 381–387 (2009)

    Article  Google Scholar 

  21. Riahifar, R., Marzbanrad, E., Raissi, B., Zamani, C., Kazemzad, M., Aghaei, A.: Sorting ZnO particles of different shapes with low frequency AC electric fields. Mater. Lett. 65, 632–635 (2011)

    Article  Google Scholar 

  22. Hart, R., Ergezen, E., Lec, R., et al.: Improved protein detection on an AC electrokinetic quartz crystal microbalance (EKQCM). Biosens. Bioelectron. 26, 3391–3397 (2011)

    Article  Google Scholar 

  23. Islam, N., Lian, M., Wu, J.: Enhancing microcantilever capability with integrated AC electroosmotic trapping. Microfluid. Nanofluid. 3, 369–375 (2007)

    Article  Google Scholar 

  24. Chiou, P.Y., Ohta, A.T., Jamshidi, A., Hsu, H.Y., Wu, M.C.: Light-actuated AC electroosmosis for nanoparticle manipulation. Microelectromech. Syst. 17, 525–531 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo García-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

García-Sánchez, P., Ramos, A. (2015). AC Electroosmosis: Basics and Lab-on-a-Chip Applications. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_125-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_125-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics