Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Smart Hydrogels

  • Alessandro ParodiEmail author
  • S. M. Khaled
  • Iman K. Yazdi
  • Michael Evangelopoulos
  • Naama E. Toledano Furman
  • Xin Wang
  • Federico Urzi
  • Sarah Hmaidan
  • Kelly A. Hartman
  • Ennio Tasciotti
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_104-2



Smart hydrogel is defined as the polymer network able to respond to external stimuli through abrupt changes in the physical nature of the network.

Polymer Science in Medicine

The first application of polymers in the medical field can date back to the 1940s when polymethylmethacrylate (PMMA) was used for the replacement of damaged corneas. Since then, the mechanical, physical, and chemical properties of polymers have been extensively investigated and utilized for numerous medical applications. In particular, regenerative medicine has benefited greatly from polymer research and development. Polymers can now replace metal devices used in orthopedic settings, and the investigation into the development of new biomaterials to repair and substitute body tissues is proceeding with great momentum. Today, the use of polymers has an extensive array of applications in medicine. They have a major role in replacing damaged bones,...


Drug Release Acrylic Acid Lower Critical Solution Temperature Shape Memory Material Hydrolyze Polyacrylamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Navarro, M., Michiardi, A., Castano, O., Planell, J.: Biomaterials in orthopaedics. J. R. Soc. Interface 5, 1137–1158 (2008)CrossRefGoogle Scholar
  2. 2.
    Ringsdorf, H.: Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp. 51, 135–153 (1975)CrossRefGoogle Scholar
  3. 3.
    Abuchowski, A., McCoy, J.R., Palczuk, N.C., van Es, T., Davis, F.F.: Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586 (1977)Google Scholar
  4. 4.
    Jenkins, A.D., Jones, R.G., Moad, G.: Terminology for reversible-deactivation radical polymerization previously called“ controlled” radical or“ living” radical polymerization (IUPAC recommendations 2010). Pure Appl. Chem. 82, 483–491 (2009)CrossRefGoogle Scholar
  5. 5.
    Cobo, I., Li, M., Sumerlin, B.S., Perrier, S.: Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nat. Mater. 14, 143–159 (2015)CrossRefGoogle Scholar
  6. 6.
    Lutz, J.-F., Börner, H.G.: Modern trends in polymer bioconjugates design. Prog. Polym. Sci. 33, 1–39 (2008)CrossRefGoogle Scholar
  7. 7.
    Ivanov, A.E., Edink, E., Kumar, A., Galaev, I.Y., Arendsen, A.F., Bruggink, A., et al.: Conjugation of penicillin acylase with the reactive copolymer of N-Isopropylacrylamide: a step toward a thermosensitive industrial biocatalyst. Biotechnol. Prog. 19, 1167–1175 (2003)CrossRefGoogle Scholar
  8. 8.
    Keys, K.B., Andreopoulos, F.M., Peppas, N.A.: Poly(ethylene glycol) star polymer hydrogels. Macromolecules 31, 8149–8156 (1998)CrossRefGoogle Scholar
  9. 9.
    Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 1655–1670 (2006)CrossRefGoogle Scholar
  10. 10.
    Anderson, J.: The future of biomedical materials. J. Mater. Sci. Mater. Med. 17, 1025–1028 (2006)CrossRefGoogle Scholar
  11. 11.
    Alijotas-Reig, J., Garcia-Gimenez, V.: Delayed immune-mediated adverse effects related to hyaluronic acid and acrylic hydrogel dermal fillers: clinical findings, long-term follow-up and review of the literature. J. Eur. Acad. Dermatol. Venereol. 22, 150–161 (2008)Google Scholar
  12. 12.
    Peppas, N.A.: Hydrogels and drug delivery. Curr. Opin. Colloid Interface Sci. 2, 531–537 (1997)CrossRefGoogle Scholar
  13. 13.
    Chilkoti, A., Dreher, M.R., Meyer, D.E., Raucher, D.: Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliv. Rev. 54, 613–630 (2002)CrossRefGoogle Scholar
  14. 14.
    Erman, B., Flory, P.J.: Critical phenomena and transitions in swollen polymer networks and in linear macromolecules. Macromolecules 19, 2342–2353 (1986)CrossRefGoogle Scholar
  15. 15.
    Flory, P.J., Rehner, J.: Statistical theory of chain configuration and physical properties of high polymers. Ann. N. Y. Acad. Sci. 44, 419–429 (1943)CrossRefGoogle Scholar
  16. 16.
    Lee, S.H., Choi, S.H., Kim, S.H., Park, T.G.: Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J. Control. Release 125, 25–32 (2008)CrossRefGoogle Scholar
  17. 17.
    Gutowska, A., Seok Bark, J., Chan Kwon, I., Han Bae, Y., Cha, Y., Wan, K.S.: Squeezing hydrogels for controlled oral drug delivery. J. Control. Release 48, 141–148 (1997)CrossRefGoogle Scholar
  18. 18.
    Webber, R.E., Shull, K.R.: Strain dependence of the viscoelastic properties of alginate hydrogels. Macromolecules 37, 6153–6160 (2004)CrossRefGoogle Scholar
  19. 19.
    Alexander, A., Ajazuddin, Khan, J., Saraf, S., Saraf, S.: Polyethylene glycol (PEG)–poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 88, 575–585 (2014)CrossRefGoogle Scholar
  20. 20.
    Urry, D.W.: Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101, 11007–11028 (1997)CrossRefGoogle Scholar
  21. 21.
    Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013)CrossRefGoogle Scholar
  22. 22.
    Serres, A., Baudyš, M., Kim, S.: Temperature and pH-sensitive polymers for human calcitonin delivery. Pharm. Res. 13, 196–201 (1996)CrossRefGoogle Scholar
  23. 23.
    Ge, J., Neofytou, E., Cahill, T.J., Beygui, R.E., Zare, R.N.: Drug release from electric-field-responsive nanoparticles. ACS Nano 6, 227–233 (2011)CrossRefGoogle Scholar
  24. 24.
    Peppas, N.A., Bures, P., Leobandung, W., Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000)CrossRefGoogle Scholar
  25. 25.
    Epstein-Barash, H., Orbey, G., Polat, B.E., Ewoldt, R.H., Feshitan, J., Langer, R., et al.: A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials 31, 5208–5217 (2010)CrossRefGoogle Scholar
  26. 26.
    Yang, Y., Urban, M.W.: Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013)CrossRefGoogle Scholar
  27. 27.
    Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., et al.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)CrossRefGoogle Scholar
  28. 28.
    Lu, H.B., Huang, W.M., Yao, Y.T.: Review of chemo-responsive shape change/memory polymers. Pigm. Resin Technol. 42, 237–246 (2013)CrossRefGoogle Scholar
  29. 29.
    Liu, W., MacKay, J.A., Dreher, M.R., Chen, M., McDaniel, J.R., Simnick, A.J., et al.: Injectable intratumoral depot of thermally responsive polypeptide–radionuclide conjugates delays tumor progression in a mouse model. J. Control. Release 144, 2–9 (2010)CrossRefGoogle Scholar
  30. 30.
    Lei, M., Ziaie, B., Nuxoll, E., Iván, K., Noszticzius, Z., Siegel, R.A.: Integration of hydrogels with hard and soft microstructures. J. Nanosci. Nanotechnol. 7, 780–789 (2007)CrossRefGoogle Scholar
  31. 31.
    Lin, G., Chang, S., Hao, H., Tathireddy, P., Orthner, M., Magda, J., et al.: Osmotic swelling pressure response of smart hydrogels suitable for chronically implantable glucose sensors. Sensors Actuators B Chem. 144, 332–336 (2010)CrossRefGoogle Scholar
  32. 32.
    Song, S.H., Park, J.H., Chitnis, G., Siegel, R.A., Ziaie, B.: A wireless chemical sensor featuring iron oxide nanoparticle-embedded hydrogels. Sensors Actuators B Chem. 193, 925–930 (2014)CrossRefGoogle Scholar
  33. 33.
    Lin, C.C., Metters, A.T.: Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Deliv. Rev. 58, 1379–1408 (2006)CrossRefGoogle Scholar
  34. 34.
    Murdan, S.: Electro-responsive drug delivery from hydrogels. J. Control. Release 92, 1–17 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2015

Authors and Affiliations

  • Alessandro Parodi
    • 1
    Email author
  • S. M. Khaled
    • 1
  • Iman K. Yazdi
    • 1
  • Michael Evangelopoulos
    • 1
  • Naama E. Toledano Furman
    • 1
  • Xin Wang
    • 1
  • Federico Urzi
    • 1
  • Sarah Hmaidan
    • 1
  • Kelly A. Hartman
    • 1
  • Ennio Tasciotti
    • 1
  1. 1.Department of NanomedicineHouston Methodist Research InstituteHoustonUSA