Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nanostructures by Electrospinning

  • Daoheng SunEmail author
  • Gaofeng Zheng
  • Dezhi Wu
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_101010-1



Electrospinning is a method to fabricate nanofibers via coupled effects of electric field on viscous fluids, e.g., polymeric, ceramic, or metallic solutions/dispersions/melts. In electrospinning process, fine charged jet/jets issue from liquid surface, following elongation, evaporation, and solidification. Then solidified nanofibers can be collected.


In the electrospinning, a micro/nano jet is generated from the solutions/dispersions/melts under electrostatic field force (EF). As shown in Fig. 1, a typical electrospinning setup consists of a high voltage source, a spinneret, a grounded collector, and a pump. The pendant droplet at the nozzle tip is deformed into a Taylor cone under the EF. As the EF overcomes the surface tension, a fine jet can be ejected from the tip of Taylor cone as illustrated in Fig. 2. After solvent volatilization, solidification, and bending instability, the charged jet can be turned into a solid...


Electrospinning Process Electrospun Nanofibers Nanofibrous Scaffold Taylor Cone Fluctuation Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Rayleigh, L.: XX. On the equilibrium of liquid conducting masses charged with electricity. Philos. Mag. 14, 184–186 (1882). doi:10.1080/14786448208628425CrossRefGoogle Scholar
  2. 2.
    Taylor, G.: Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A Math. Phys. Sci. 280, 383–397 (1964). doi:10.1098/rspa.1964.0151CrossRefGoogle Scholar
  3. 3.
    Cooley J.: Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids. 19 May 1900Google Scholar
  4. 4.
    Formhals A.: Process and apparatus for preparing artificial threads. 2 Oct 1934Google Scholar
  5. 5.
    Norton C. L.: Method of and apparatus for producing fibrous or filamentary material. 21 July 1936Google Scholar
  6. 6.
    Sun, D.H., Chang, C., Li, S., Lin, L.W.: Near-field electrospinning. Nano Lett. 6, 839–842 (2006). doi:10.1021/nl0602701CrossRefGoogle Scholar
  7. 7.
    Yarin, A., Zussman, E.: Upward needleless electrospinning of multiple nanofibers. Polymer 45, 2977–2980 (2004). doi:10.1016/j.polymer.2004.02.066CrossRefGoogle Scholar
  8. 8.
    Wu, D.Z., Huang, X.P., Lai, X.T., Sun, D.H., Lin, L.W.: High throughput tip-less electrospinning via a circular cylindrical electrode. J. Nanosci. Nanotechnol. 10, 4221–4226 (2010). doi:10.1166/jnn.2010.2194CrossRefGoogle Scholar
  9. 9.
    Wang, X., Niu, H.T., Lin, T., Wang, X.G.: Needleless electrospinning of nanofibers with a conical wire coil. Polym. Eng. Sci. 49, 1582–1586 (2009). doi:10.1002/pen.21377CrossRefGoogle Scholar
  10. 10.
    Chang, C., Limkrailassiri, K., Lin, L.W.: Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl. Phys. Lett. 93, 123111 (2008). doi:10.1063/1.2975834CrossRefGoogle Scholar
  11. 11.
    Munir, M.M., Iskandar, F., Khairurrijal, Okuyama, A.: A constant-current electrospinning system for production of high quality nanofibers. Rev. Sci. Instrum. 79, 093904 (2008). doi:10.1063/1.2981699CrossRefGoogle Scholar
  12. 12.
    Thompson, C.J., Chase, G.G., Yarin, A.L., Reneker, D.H.: Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48, 6913–6922 (2007). doi:10.1016/j.polymer.2007.09.017CrossRefGoogle Scholar
  13. 13.
    Theron, A., Zussman, E., Yarin, A.L.: Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12, 384–390 (2001). doi:10.1088/0957-4484/12/3/329CrossRefGoogle Scholar
  14. 14.
    Kim, H.-Y., Lee, M., Park, K.J., Kim, S., Mahadevan, L.: Nanopottery: coiling of electrospun polymer nanofibers. Nano Lett. 10, 2138–2140 (2010). doi:10.1021/nl100824dCrossRefGoogle Scholar
  15. 15.
    Li, Z.L., Wang, C.: One-Dimensional Nanostructures Electrospinning Technique and Unique Nanofibers. Springer, Heidelberg/New York/Dordrecht/London (2013)CrossRefGoogle Scholar
  16. 16.
    Ding, B., Yu, J.: Electrospun Nanofibers for Energy and Environmental Applications. Springer, Heidelberg/New York/Dordrecht/London (2014)CrossRefGoogle Scholar
  17. 17.
    Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010). doi:10.1021/nl9040719CrossRefGoogle Scholar
  18. 18.
    Wang, X., Zheng, G., Xu, L., Cheng, W., Xu, B., Huang, Y., Sun, D.: Fabrication of nanochannels via near-field electrospinning. Appl. Phys. A Mater. Sci. Process. 108, 825–828 (2012). doi:10.1007/s00339-012-6975-6CrossRefGoogle Scholar
  19. 19.
    Srivastava Y., Marquez M., Thorsen T.: Microfluidic electrospinning of biphasic nanofibers with Janus morphology. Biomicrofluidics 3 (2009). doi:10.1063/1.3009288Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Aerospace EngineeringXiamen UniversityFujianChina
  2. 2.Department of Mechanical and Electrical EngineeringXiamen UniversityFujianPeople’s Republic of China
  3. 3.Department of AeronauticsXiamen UniversityFujianPeople’s Republic of China