Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nanostructures and Characteristics of Carbon Nanofibers

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_101008-1

Introduction

Research on nanocarbons has been at the forefront over the past several decades and has unarguably contributed tremendously to the birth of the field of nanotechnology. These efforts include providing insights into the novel properties of carbon nanomaterials, development of large-area, wafer-scale synthesis techniques, design of new characterization tools for understanding the role of imperfections in these materials, and the development of processing methods to integrate these materials into novel device architectures. In particular, in the context of applications of interest to the electronics industry, carbon nanomaterials have been proposed as viable alternatives to traditional materials used in Si integrated-circuits (ICs), which includes their exploration in nanoscale transistors [1, 2, 3, 4, 5, 6], interconnects [7, 8], field-emission displays [9], biosensors [10], heat-transporting assemblies [11], thermo-electric [12], photo-voltaic [13], and optical materials [14...

Keywords

Optical Absorption Property Nanocarbon Material Graphene Resonator Optical Absorption Characteristic NEMS Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. 1.
    Avouris, P., Chen, Z., Perebeinos, V.: Nat. Nanotechnol. 2, 605 (2007)CrossRefGoogle Scholar
  2. 2.
    Cao, Q., Rogers, J.: Adv. Mater. 21, 29 (2009)CrossRefGoogle Scholar
  3. 3.
    Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C.: Science 294, 1317 (2001)CrossRefGoogle Scholar
  4. 4.
    Zhang, Z., Liang, X., Wang, S., Yao, K., Hu, Y., Zhu, Y., Chen, Q., Zhou, W., Li, Y., Yao, Y., Zhang, J., Peng, L.M.: Nano Lett. 7, 3603 (2007)CrossRefGoogle Scholar
  5. 5.
    Appenzeller, J., Lin, Y., Knoch, J., Chen, Z., Avouris, P.: IEEE Trans. Electron Devices 52, 2568 (2005)CrossRefGoogle Scholar
  6. 6.
    Bandaru, P.R., Daraio, C., Jin, S., Rao, A.M.: Nat. Mater. 4, 663 (2005)CrossRefGoogle Scholar
  7. 7.
    Li, J., Cassell, A., Ng, H.T., Stevens, R., Han, J., Meyyappan, M.: Appl. Phys. Lett. 82, 2491 (2003)CrossRefGoogle Scholar
  8. 8.
    Li, H., Xu, C., Srivastava, N., Banerjee, K.: IEEE Trans. Elect. Dev. 56, 1799 (2009)CrossRefGoogle Scholar
  9. 9.
    Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Appl. Phys. Lett. 75, 3129 (1999)CrossRefGoogle Scholar
  10. 10.
    Lu, F., Gu, L., Meziani, M.J., Wang, X., Luo, P.G., Veca, L.M., Cao, L., Sun, Y.P.: Adv. Mater. 21, 139 (2009)CrossRefGoogle Scholar
  11. 11.
    Yu, C., Saha, S., Zhou, J., Shi, K., Cassel, A.M., Cruden, B.A., Ngo, Q., Li, J.: J. Heat Transfer-Trans. ASME 128, 234 (2006)CrossRefGoogle Scholar
  12. 12.
    Wei, P., Bao, W., Pu, Y., Lau, C.N., Shi, J.: Phys. Rev. Lett. 102, 166808 (2009)CrossRefGoogle Scholar
  13. 13.
    Ago, H., Petritsch, K., Shaffer, M.S.P., Windle, A.H., Friend, R.H.: Adv. Mater. 11, 1281 (1999)CrossRefGoogle Scholar
  14. 14.
    Homma, Y., Chiashi, S., Kobayashi, Y.: Rep. Prog. Phys. 72, 066502 (2009)CrossRefGoogle Scholar
  15. 15.
    Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.L., Lieber, C.M.: Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000)CrossRefGoogle Scholar
  16. 16.
    Jang, J.E., Cha, S.N., Choi, Y.J., Kang, D.J., Butler, T.P., Hasko, D.G., Jung, J.E., Kim, J.M., Amaratunga, G.A.J.: Nat. Nanotech. 3, 26 (2008)CrossRefGoogle Scholar
  17. 17.
    Kaul, A.B.., Wong, E.W., Epp, L., Hunt, B.D.: Electromechanical carbon nanotube switches for high-frequency applications. Nano Lett. 6, 942–947 (2006)CrossRefGoogle Scholar
  18. 18.
    Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Science 287, 637 (2000)CrossRefGoogle Scholar
  19. 19.
    Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (eds.): Carbon Nanotubes. Springer, Berlin (2001)Google Scholar
  20. 20.
    Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: Nature 318, 162 (1985)CrossRefGoogle Scholar
  21. 21.
    Iijima, S.: Nature 354, 56 (1991)CrossRefGoogle Scholar
  22. 22.
    Iijima, S., Ichihashi, T.: Nature 363, 603 (1993)CrossRefGoogle Scholar
  23. 23.
    Han, M., Ozyilmaz, B., Zhang, Y., Kim, P.: Phys. Rev. Lett. 98, 206805 (2007)CrossRefGoogle Scholar
  24. 24.
    Geim, A.K., Novoselov, K.S.: Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  25. 25.
    Dai, L. (ed): In Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications. Elsevier, Oxford (2006)Google Scholar
  26. 26.
    Pierson, H.O.: Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing and Applications. Noyes Publications, Park Ridge (1993)Google Scholar
  27. 27.
    Krüger, A.: Carbon Materials and Nanotechnology. Wiley, Weinheim (2010)CrossRefGoogle Scholar
  28. 28.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)CrossRefGoogle Scholar
  29. 29.
    Boehm, H.P., Clauss, A., Fischer, G.O., Hoffmann, U.: Z. Naturforsch. B 17, 150 (1962)CrossRefGoogle Scholar
  30. 30.
    Morgan, A.E., Somarjai, G.A.: Surf. Sci. 12, 405 (1968)CrossRefGoogle Scholar
  31. 31.
    May, J.W.: Surf. Sci. 17, 267 (1969)CrossRefGoogle Scholar
  32. 32.
    Gamo, Y., Nagashima, A., Wakabayashi, M., Terai, M., Oshima, C.: Surf. Sci. 374, 61 (1997)CrossRefGoogle Scholar
  33. 33.
    Dedkov, Y.S., Shikin, A.M., Adamchuk, V.K., Molodtsov, S.L., Laubschat, C., Bauer, A., Kaindl, G.: Phys. Rev. B 64, 035405 (2001)CrossRefGoogle Scholar
  34. 34.
    Batzill, M.: Surf. Sci. Rep. 67, 83 (2012)CrossRefGoogle Scholar
  35. 35.
    Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Nature 438, 201 (2005)CrossRefGoogle Scholar
  36. 36.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Nature 438, 197 (2005)CrossRefGoogle Scholar
  37. 37.
    Zhan, D., Yan, J., Lai, L., Ni, Z., Liu, L., Shen, Z.: Adv. Mat. 24, 4055 (2012)CrossRefGoogle Scholar
  38. 38.
    Evans, J.W., Thiel, P.A., Bartelt, M.C.: Sur. Sci. Rep. 61, 1 (2006)CrossRefGoogle Scholar
  39. 39.
    Landau, L.D.: Phys. Z. Sowjetunion 11, 26 (1937)Google Scholar
  40. 40.
    Mermin, N.D.: Phys. Rev. 176, 250 (1968)CrossRefGoogle Scholar
  41. 41.
    Wallace, P.R.: Phys. Rev. 71, 622 (1947)CrossRefGoogle Scholar
  42. 42.
    Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: Nature 490, 192 (2012)CrossRefGoogle Scholar
  43. 43.
    Wang, X., Zhi, Z., Mullen, K.: Nano Lett. 8, 323 (2009)CrossRefGoogle Scholar
  44. 44.
    Matyba, P., Yamaguchi, H., Eda, G., Chhowalla, M., Edman, L., Robinson, N.D.: ACS Nano 4, 637 (2010)CrossRefGoogle Scholar
  45. 45.
    Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R., Hebard, A.F.: Nano Lett. 12, 2745 (2012)CrossRefGoogle Scholar
  46. 46.
    Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Nano Lett. 8, 3498 (2008)CrossRefGoogle Scholar
  47. 47.
    Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Nat. Mater. 6, 652 (2007)CrossRefGoogle Scholar
  48. 48.
    Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., Sheehan, P.E.: Nano Lett. 8, 3137 (2008)CrossRefGoogle Scholar
  49. 49.
    Hill, E.W., Geim, A.K., Novoselov, K., Schedin, F., Blake, P.: IEEE Trans. Mag. 42, 2694 (2006)CrossRefGoogle Scholar
  50. 50.
    Heersche, H.B., Jarillo-Herrero, P., Oostinga, J.B., Vandersypen, L.M.K., Morpurgo, A.F.: Nature 446, 56 (2007)CrossRefGoogle Scholar
  51. 51.
    Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: J. Mater. Chem. 16, 155 (2006)CrossRefGoogle Scholar
  52. 52.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Nature 442, 282 (2006)CrossRefGoogle Scholar
  53. 53.
    Huynh, W.U., Dittmer, J.J., Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)CrossRefGoogle Scholar
  54. 54.
    Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308–1308 (2008)CrossRefGoogle Scholar
  55. 55.
    Derkacs, D., Lim, S.H., Matheu, P., Mar, W., Yu, E.T.: Appl. Phys. Lett. 89, 093103 (2006)CrossRefGoogle Scholar
  56. 56.
    Hu, L., Chen, G.: Nano Lett. 7(11), 3249–3252 (2007)CrossRefGoogle Scholar
  57. 57.
    Tsakalakos, L., Balch, J., Fronheiser, J., Shih, M.Y., LeBoeuf, S.F., Pietrozykowski, M., Codella, P.J., Sulima, O., Rand, J., Kumar, A.D., Korevaar, B.A.: Strong broadband optical absorption in silicon nanowire films. J. Nanophotonics 1, 013552 (2007)CrossRefGoogle Scholar
  58. 58.
    Peng, K., Wu, Y., Fang, H., Zhong, X., Xu, Y., Zhu, J.: Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Int. Ed. 44, 2737–2742 (2005)CrossRefGoogle Scholar
  59. 59.
    Garcia-Vidal, F.J., Pitarke, J.M., Pendry, J.B.: Effective medium theory of the optical properties of aligned carbon nanotubes. Phys. Rev. Lett. 78, 4289–4292 (1997)CrossRefGoogle Scholar
  60. 60.
    Yang, Z.-P., Ci, L., Bur, J.A., Lin, S.-Y., Ajayan, P.M.: Nano Lett. 8, 446 (2008)CrossRefGoogle Scholar
  61. 61.
    Mizuno, K., Ishii, J., Kishida, H., Hayamizu, Y., Yasuda, S., Futaba, D.N., Yumura, M., Hata, K.: Proc. Natl. Acad. Sci. U. S. A. 106, 6044 (2009)CrossRefGoogle Scholar
  62. 62.
    Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Science 306, 1362 (2004)CrossRefGoogle Scholar
  63. 63.
    Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.: Science 283, 512 (1999)CrossRefGoogle Scholar
  64. 64.
    Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Dickey, E.C., Chen, J.: Chem. Phys. Lett. 303, 467 (1999)CrossRefGoogle Scholar
  65. 65.
    Eriksson, P., Andersson, J.Y., Stemme, G.: Phys. Scr. T54, 165 (1994)CrossRefGoogle Scholar
  66. 66.
    Lehman, J.H., Deshpande, R., Rice, P., To, B., Dillon, A.C.: Infrared Phys. Tech. 47, 246 (2006)CrossRefGoogle Scholar
  67. 67.
    Kaul, A.B.., Coles, J.B., Megerian, K.G., Eastwood, M., Green, R.O., Bandaru, P.R.: Small 9, 1058 (2013)CrossRefGoogle Scholar
  68. 68.
    Nunes, C., Teixeira, V., Collares-Pereira, M., Monteiro, A., Roman, E., Martin-Gago, J.: Vacuum 67, 623 (2002)CrossRefGoogle Scholar
  69. 69.
    Murakami, Y., Chiashi, S., Miyauchi, Y., Maruyama, S.: Jpn. J. Appl. Phys. 43, 1221 (2004)CrossRefGoogle Scholar
  70. 70.
    Sato, S., Kawabata, A., Kondo, D., Nihei, M., Awano, Y.: Chem. Phys. Lett. 402, 149 (2005)CrossRefGoogle Scholar
  71. 71.
    Advena, D.J., Bly, V.T., Cox, J.T.: Appl. Opt. 32, 1136 (1993)CrossRefGoogle Scholar
  72. 72.
    Johnson, C.E.: Metal Finish. 78, 21 (1980)Google Scholar
  73. 73.
    Kodama, S., Horiuchi, M., Kuni, T., Kuroda, K.: IEEE Trans. Instrum. Meas. 39, 230 (1990)CrossRefGoogle Scholar
  74. 74.
    Lee, C., Bae, S., Mobasser, S., Manohara, H.: Nano Lett. 5, 2438 (2005)CrossRefGoogle Scholar
  75. 75.
    Zhu, J., Yu, Z., Burkhard, G.F., Hsu, C.-M., Connor, S.T., Xu, Y., Wang, Q., McGehee, M., Fan, S., Cui, Y.: Nano Lett. 9, 279 (2009)CrossRefGoogle Scholar
  76. 76.
    Feng, P.X.-L.: Nanoelectromechanical switching devices: scaling toward ultimate energy efficiency and longevity (invited talk). The 3rd Berkeley symposium on energy efficient electronic systems (E3S), Berkeley, 28–29 Oct 2013, pp. 1–2, doi:10.1109/E3S.2013.6705881Google Scholar
  77. 77.
    Naik, A.K., Hanay, M.S., Hiebert, W.K., Feng, X.L., Roukes, M.L.: Towards single-molecule nanomechanical mass spectrometry. Nature Nanotech. 4, 445–450 (2009)CrossRefGoogle Scholar
  78. 78.
    Rugar, D., Budakian, R., Mamin, H.J., Chui, B.W.: Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004)CrossRefGoogle Scholar
  79. 79.
    Rocheleau, T., Ndukum, T., Macklin, C., Hertzberg, J.B., Clerk, A.A., Schwab, K.C.: Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010)CrossRefGoogle Scholar
  80. 80.
    Feng, X.L., He, R., Yang, P., Roukes, M.L.: Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7, 1953–1959 (2007)CrossRefGoogle Scholar
  81. 81.
    Huang, X.M.H., Feng, X.L., Zorman, C.A., Mehregany, M., Roukes, M.L.: VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7, 247 (2005)CrossRefGoogle Scholar
  82. 82.
    Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007)CrossRefGoogle Scholar
  83. 83.
    Moser, J., Güttinger, J., Eichler, A., Esplandiu, M.J., Liu, D.E., Dykman, M.I., Bachtold, A.: Ultrasensitive force detection with a nanotube mechanical resonator. Nature Nanotech. 8, 493–496 (2013)CrossRefGoogle Scholar
  84. 84.
    Eriksson, A., Lee, S., Sourab, A., Issacsson, A., Kaunisto, R., Kinaret, J.M., Campbell, E.E.B.: Direct transmission detection of tunable mechanical resonance in an individual carbon nanofiber relay. Nano Lett. 8, 1224–1228 (2008)CrossRefGoogle Scholar
  85. 85.
    Kaul, A.B.., Megerian, K.G., Jennings, A.T., Greer, J.R.: In situ characterization of vertically oriented carbon nanofibers for three-dimensional nano-electro-mechanical device applications. Nanotechnology 21, 315501 (2010)CrossRefGoogle Scholar
  86. 86.
    Zhang, Y., Chang, A., Cao, J., Wang, Q., Kim, W., Li, Y.M., Morros, N., Yenilmez, E., Kong, J., Dai, H.J.: Electric-field directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79, 3155–3157 (2001)CrossRefGoogle Scholar
  87. 87.
    Teo, K.B.K., Chhowalla, M., Amaratunga, G.A., Milne, W.I., Pirio, G., Legagneux, P., Wyczisk, F., Olivier, J., Pribat, D.: Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy. J. Vac. Sci. Technol. B 20, 116–121 (2002)CrossRefGoogle Scholar
  88. 88.
    Melechko, A.V., Merkulov, V.I., McKnight, T.E., Guillorn, M.A., Klein, K.L., Lowndes, D.H., Simpson, M.L.: J. Appl. Phys. 97, 041301 (2005)CrossRefGoogle Scholar
  89. 89.
    Lee, J., Feng, P.X.-L., Kaul, A.B..: Characterization of plasma synthesized vertical carbon nanofibers for nanoelectronics applications. MRS Proceedings 1451 (2012 MRS Spring Meeting, Symposium EE – Nano Carbon Materials & Devices, San Francisco, 9–13 April 2012), pp. 117–122, doi:10.1557/opl.2012.922Google Scholar
  90. 90.
    Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., Geim, A.K.: Nano Lett. 11, 2396 (2011)CrossRefGoogle Scholar
  91. 91.
    Moser, J., Barreiro, A., Bachtold, A.: Appl. Phys. Lett. 91, 163513 (2007)CrossRefGoogle Scholar
  92. 92.
    Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Science 321, 385 (2008)CrossRefGoogle Scholar
  93. 93.
    Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Nano Lett. 8, 902 (2008)CrossRefGoogle Scholar
  94. 94.
    Balandin, A.A.: Nature Mater. 10, 569 (2011)CrossRefGoogle Scholar
  95. 95.
    Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Nano Lett. 8, 2458 (2008)CrossRefGoogle Scholar
  96. 96.
    Lee, G.-H., Cooper, R.C., An, S.J., Lee, S., van der Zande, A., Petrone, N., Hammerberg, A.G., Lee, C., Crawford, B., Oliver, W., Kysar, J.W., Hone, J.: High-strength chemical-vapor-deposited Graphene and grain boundaries. Science 340, 1073–1076 (2013)CrossRefGoogle Scholar
  97. 97.
    Lee, J., Feng, P.X.-L.: High frequency graphene nanomechanical resonators and transducers. In: Proceedings of the IEEE international frequency control symposium (IFCS 2012), Baltimore, 21–24 May 2012, pp. 1–7, doi:10.1109/FCS.2012.6243742Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Metallurgical & Materials Engineering, Department of Electrical & Computer Engineering (Joint)University of Texas, El Paso, College of EngineeringEl PasoUSA
  2. 2.Electrical Engineering & Computer ScienceCase Western Reserve UniversityClevelandUSA