Skip to main content

Nonlinear and Parametric NEMS Resonators

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology
  • 225 Accesses

Synonyms

Chaos; Coupling; Duffing; Nanoelectromechanical systems; Nanomechanical; NEMS; Nonlinearity; Oscillator; Parametric; Synchronization

Definition

Nonlinear NEMS resonators are nanoelectromechanical system resonators that operate at excitation levels exceeding their linear range. Parametric NEMS resonators are NEMS resonators that are actuated parametrically, i.e., by means of modulating a system parameter at a rate proportional to the resonance frequency.

Introduction: Nonlinearity in NEMS

One of the astonishing examples of miniaturization in recent decades involves the development of micro- and nanoelectromechanical systems (MEMS and NEMS) – tiny moving structures with the sizes down to few atoms across [1]. An important subclass of already diverse field of MEMS and NEMS involves resonant electromechanical systems, which have already shown an unprecedented performance in their ability to sense important physical parameters, probe or manipulate the surfaces of materials, and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Roukes, M.L.: Nanoelectromechanical systems face the future. Phys. World 14(2), 25–31 (2001)

    Article  Google Scholar 

  2. Yang, Y., Ng, E.J., Hong, V.A., Ahn, C.H., Chen, Y., Ahadi, E., Dykman, M., Kenny, T.W.: Measurement of the nonlinear elasticity of doped bulk-mode mems resonators. Solid-State Sensors, Actuators, and Microsystems Workshop, pp. 285–288. Hilton Head (2014)

    Google Scholar 

  3. Hiebert, W.K., Vick, D., Sauer, V., Freeman, M.R.: Optical interferometric displacement calibration and thermomechanical noise detection in bulk focused ion beam-fabricated nanoelectromechanical systems. J. Micromech. Microeng. 20, 115038 (2010)

    Article  Google Scholar 

  4. Bargatin, I., Kozinsky, I., Roukes, M.L.: Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators. Appl. Phys. Lett. 90, 093116 (2007)

    Article  Google Scholar 

  5. Kozinsky, I., Postma, H.W.C., Bargatin, I., Roukes, M.L.: Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88, 253101 (2006)

    Article  Google Scholar 

  6. Villanueva, L.G., Karabalin, R.B., Matheny, M.H., Chi, D., Sader, J.E., Roukes, M.L.: Nonlinearity in nanomechanical cantilevers. Phys. Rev. B 87, 024304 (2013)

    Article  Google Scholar 

  7. Matheny, M., Villanueva, L.G., Karabalin, R.B., Sader, J.E., Roukes, M.L.: Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 13, 1622–1626 (2013)

    Google Scholar 

  8. Lifshitz, R., Cross, M.C.: Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators, in Reviews of Nonlinear Dynamics and Complexity. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  9. Kozinsky, I., Postma, H.W.C., Kogan, O., Husain, A., Roukes, M.L.: Basins of attraction of a nonlinear nanomechanical resonator. Phys. Rev. Lett. 99, 207201 (2007)

    Article  Google Scholar 

  10. Aldridge, J.S., Cleland, A.N.: Noise-enabled precision measurements of a duffing nanomechanical resonator. Phys. Rev. Lett. 94, 156403 (2005)

    Article  Google Scholar 

  11. Unterreithmeier, Q.P., Faust, T., Kotthaus, J.P.: Nonlinear switching dynamics in a nanomechanical resonator. Phys. Rev. B 81, 241405 (2010)

    Article  Google Scholar 

  12. Villanueva, L.G., Kenig, E., Karabalin, R.B., Matheny, M.H., Lifshitz, R., Cross, M.C., Roukes, M.L.: Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110, 177208 (2013)

    Article  Google Scholar 

  13. Karabalin, R.B., Cross, M.C., Roukes, M.L.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B. 79(16), 165309 (2009)

    Article  Google Scholar 

  14. O’Connel, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., Cleland, A.M.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  Google Scholar 

  15. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Addison Wesley, New York (1994)

    Google Scholar 

  16. Matheny, M.H., Grau, M., Villanueva, L.G., Karabalin, R.B., Cross, M.C., Roukes, M.L.: Phase synchronization of two anharmonic nanomechanical oscillators. Phys. Rev. Lett. 112, 014101 (2014)

    Article  Google Scholar 

  17. Cross, M.C., Rogers, J.L., Lifshitz, R., Zumdieck, A.: Synchronization by reactive coupling and nonlinear frequency pulling. Phys. Rev. E 73, 036205 (2006)

    Article  Google Scholar 

  18. Karabalin, R.B., Masmanidis, S.C., Roukes, M.L.: Parametric amplification in high frequency piezoelectric nanomechanical systems. Appl. Phys. Lett. 97, 183101 (2010)

    Article  Google Scholar 

  19. Villanueva, L.G., Karabalin, R.B., Matheny, M.H., Kenig, E., Cross, M.C., Roukes, M.L.: A nanoscale parametric feedback oscillator. Nano Lett. 11, 5054–5059 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rassul Karabalin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Karabalin, R. (2015). Nonlinear and Parametric NEMS Resonators. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_101003-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_101003-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics