Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nonlinear and Parametric NEMS Resonators

  • Rassul Karabalin
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_101003-1

Synonyms

Definition

Nonlinear NEMS resonators are nanoelectromechanical system resonators that operate at excitation levels exceeding their linear range. Parametric NEMS resonators are NEMS resonators that are actuated parametrically, i.e., by means of modulating a system parameter at a rate proportional to the resonance frequency.

Introduction: Nonlinearity in NEMS

One of the astonishing examples of miniaturization in recent decades involves the development of micro- and nanoelectromechanical systems (MEMS and NEMS) – tiny moving structures with the sizes down to few atoms across [1]. An important subclass of already diverse field of MEMS and NEMS involves resonant electromechanical systems, which have already shown an unprecedented performance in their ability to sense important physical parameters, probe or manipulate the surfaces of materials, and...

Keywords

Phase Noise Parametric Resonance Mechanical Resonator Nanoelectromechanical System Resonator Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Roukes, M.L.: Nanoelectromechanical systems face the future. Phys. World 14(2), 25–31 (2001)CrossRefGoogle Scholar
  2. 2.
    Yang, Y., Ng, E.J., Hong, V.A., Ahn, C.H., Chen, Y., Ahadi, E., Dykman, M., Kenny, T.W.: Measurement of the nonlinear elasticity of doped bulk-mode mems resonators. Solid-State Sensors, Actuators, and Microsystems Workshop, pp. 285–288. Hilton Head (2014)Google Scholar
  3. 3.
    Hiebert, W.K., Vick, D., Sauer, V., Freeman, M.R.: Optical interferometric displacement calibration and thermomechanical noise detection in bulk focused ion beam-fabricated nanoelectromechanical systems. J. Micromech. Microeng. 20, 115038 (2010)CrossRefGoogle Scholar
  4. 4.
    Bargatin, I., Kozinsky, I., Roukes, M.L.: Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators. Appl. Phys. Lett. 90, 093116 (2007)CrossRefGoogle Scholar
  5. 5.
    Kozinsky, I., Postma, H.W.C., Bargatin, I., Roukes, M.L.: Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88, 253101 (2006)CrossRefGoogle Scholar
  6. 6.
    Villanueva, L.G., Karabalin, R.B., Matheny, M.H., Chi, D., Sader, J.E., Roukes, M.L.: Nonlinearity in nanomechanical cantilevers. Phys. Rev. B 87, 024304 (2013)CrossRefGoogle Scholar
  7. 7.
    Matheny, M., Villanueva, L.G., Karabalin, R.B., Sader, J.E., Roukes, M.L.: Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 13, 1622–1626 (2013)Google Scholar
  8. 8.
    Lifshitz, R., Cross, M.C.: Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators, in Reviews of Nonlinear Dynamics and Complexity. Wiley-VCH, Weinheim (2008)Google Scholar
  9. 9.
    Kozinsky, I., Postma, H.W.C., Kogan, O., Husain, A., Roukes, M.L.: Basins of attraction of a nonlinear nanomechanical resonator. Phys. Rev. Lett. 99, 207201 (2007)CrossRefGoogle Scholar
  10. 10.
    Aldridge, J.S., Cleland, A.N.: Noise-enabled precision measurements of a duffing nanomechanical resonator. Phys. Rev. Lett. 94, 156403 (2005)CrossRefGoogle Scholar
  11. 11.
    Unterreithmeier, Q.P., Faust, T., Kotthaus, J.P.: Nonlinear switching dynamics in a nanomechanical resonator. Phys. Rev. B 81, 241405 (2010)CrossRefGoogle Scholar
  12. 12.
    Villanueva, L.G., Kenig, E., Karabalin, R.B., Matheny, M.H., Lifshitz, R., Cross, M.C., Roukes, M.L.: Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110, 177208 (2013)CrossRefGoogle Scholar
  13. 13.
    Karabalin, R.B., Cross, M.C., Roukes, M.L.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B. 79(16), 165309 (2009)CrossRefGoogle Scholar
  14. 14.
    O’Connel, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Sank, D., Wang, H., Weides, M., Wenner, J., Martinis, J.M., Cleland, A.M.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)CrossRefGoogle Scholar
  15. 15.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos. Addison Wesley, New York (1994)Google Scholar
  16. 16.
    Matheny, M.H., Grau, M., Villanueva, L.G., Karabalin, R.B., Cross, M.C., Roukes, M.L.: Phase synchronization of two anharmonic nanomechanical oscillators. Phys. Rev. Lett. 112, 014101 (2014)CrossRefGoogle Scholar
  17. 17.
    Cross, M.C., Rogers, J.L., Lifshitz, R., Zumdieck, A.: Synchronization by reactive coupling and nonlinear frequency pulling. Phys. Rev. E 73, 036205 (2006)CrossRefGoogle Scholar
  18. 18.
    Karabalin, R.B., Masmanidis, S.C., Roukes, M.L.: Parametric amplification in high frequency piezoelectric nanomechanical systems. Appl. Phys. Lett. 97, 183101 (2010)CrossRefGoogle Scholar
  19. 19.
    Villanueva, L.G., Karabalin, R.B., Matheny, M.H., Kenig, E., Cross, M.C., Roukes, M.L.: A nanoscale parametric feedback oscillator. Nano Lett. 11, 5054–5059 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.TowerJazz SemiconductorsNewport BeachUSA