Skip to main content

Surface Dissipations in NEMS/MEMS

  • Living reference work entry
  • First Online:
  • 134 Accesses

Synonyms

Surface loss in micromechanical/nanomechanical resonators; Surface loss in NEMS/MEMS; Mechanical energy dissipation.

Definition

Surface dissipation is the mechanical energy loss caused by surface defects, such as dangling bonds, absorbates, and crystal termination defects. It becomes dominant as the dimensions of nanoelectromechanical systems (NEMS)/microelectromechanical systems (MEMS) resonators are reduced and the surface-to-volume ratio grows.

Overview

Nanoelectromechanical systems (NEMS)/microelectromechanical systems (MEMS) are systems integrating nanometer/micrometer-scale mechanical and electrical components. NEMS/MEMS resonators play an important role in viable commercial technologies and are becoming more and more prevalent in research applications; for example, micromechanical resonators are excellent transducers for force or mass detection [1, 2]. Advances in nanofabrication technology have enabled extreme miniaturization of resonant sensors. As tools for basic...

This is a preview of subscription content, log in via an institution.

References

  1. Rugar, D., Zuger, O., Hoen, S., Yannoni, C.S., Vieth, H.M., Kendrick, R.D.: Force detection of nuclear magnetic resonance. Science 264, 1560–1563 (1994)

    Article  Google Scholar 

  2. Huang, X., Feng, X., Zorman, C., Mehregany, M., Roukes, M.: VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7, 247 (2005)

    Article  Google Scholar 

  3. Zolfagharkhani, G., Gaidarzhy, A., Degiovanni, P., Kettemann, S., Fulde, P., Mohanty, P.: Nanomechanical detection of itinerant electron spin flip. Nat. Nanotechnol. 3, 720–723 (2008)

    Article  Google Scholar 

  4. Naik, A., Hanay, M., Hiebert, W., Feng, X., Roukes, M.: Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4, 445–450 (2009)

    Article  Google Scholar 

  5. Wu, G., Ji, H., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M., Chakraborty, A., Majumdar, A.: Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. 98, 1560–1564 (2001)

    Article  Google Scholar 

  6. Montemagno, C., Bachand, G.: Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10, 225–231 (1999)

    Article  Google Scholar 

  7. Cleland, A.: Themomechanical noise limits on parametric sensing with nanomechanical resonators. New J. Phys. 7, 235 (2005)

    Article  Google Scholar 

  8. Yang, J.L., Ono, T., Esashi, M.: Energy dissipation in submicrometer thick single–crystal silicon cantilevers. IEEE J. Microelectromech. Syst. 11, 775–783 (2002)

    Article  Google Scholar 

  9. Stemme, G.: Resonant silicon sensors. J. Micromech. Microeng. 1, 113–125 (1991)

    Article  Google Scholar 

  10. Yang, J.L., Ono, T., Esashi, M.: Investigating surface stress: surface loss in ultrathin single-crystal silicon cantilevers. J. Vac. Sci. Technol. B 19, 551–556 (2001)

    Article  Google Scholar 

  11. Yang, J.L., Ono, T., Esashi, M.: Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers. Appl. Phys. Lett. 77, 3860–3862 (2000)

    Article  Google Scholar 

  12. Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W., Stipe, B.C., Rugar, D.: Quality factors in micro- and submicron- thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000)

    Article  Google Scholar 

  13. Ibach, H.: Adsorbate-induced surface stress. J. Vac. Sci. Technol. A12, 2240–2245 (1994)

    Article  Google Scholar 

  14. Ibach, H.: The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 193–263 (1997)

    Article  Google Scholar 

  15. Grossmann, A., Erley, W., Hannon, J.B., Ibach, H.: Giant surface stress in heteroepitaxial films: invalidation of a classical rule in epitaxy. Phys. Rev. Lett. 77, 127–130 (1996)

    Article  Google Scholar 

  16. Nowick, A.S., Berry, B.S.: Anelastic Relaxation in Crystalline Materials. Academic, New York (1972)

    Google Scholar 

  17. Boland, J.J.: Structure of H-saturated Si(100) surface. Phys. Rev. Lett. 65, 3325–3328 (1990)

    Article  Google Scholar 

  18. Boland, J.J.: Role of bond-strain in the chemistry of hydrogen on the Si(100) surface. Surf. Sci. 261, 17–28 (1992)

    Article  Google Scholar 

  19. Wang, Y., Henry, J., Sengupta, D., Hines, M.: Methyl monolayers suppress mechanical energy dissipation in micromechanical silicon resonators. Appl. Phys. Lett. 85, 5736–5738 (2004)

    Article  Google Scholar 

  20. Henry, J., Wang, Y., Sengupta, D., Hines, M.: Understanding the effects of surface chemistry on q: mechanical energy dissipation in alkyl-terminated (c1–c18) micromechanical silicon resonators. J. Phys. Chem. B 111, 88–94 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinling Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Yang, J. (2016). Surface Dissipations in NEMS/MEMS. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_101000-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_101000-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics