Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Surface Dissipations in NEMS/MEMS

  • Jinling Yang
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_101000-1

Synonyms

Definition

Surface dissipation is the mechanical energy loss caused by surface defects, such as dangling bonds, absorbates, and crystal termination defects. It becomes dominant as the dimensions of nanoelectromechanical systems (NEMS)/microelectromechanical systems (MEMS) resonators are reduced and the surface-to-volume ratio grows.

Overview

Nanoelectromechanical systems (NEMS)/microelectromechanical systems (MEMS) are systems integrating nanometer/micrometer-scale mechanical and electrical components. NEMS/MEMS resonators play an important role in viable commercial technologies and are becoming more and more prevalent in research applications; for example, micromechanical resonators are excellent transducers for force or mass detection [1, 2]. Advances in nanofabrication technology have enabled extreme miniaturization of resonant sensors. As tools for basic...

Keywords

Mechanical Energy Dissipation Surface Loss Cantilever Surface Dime Atom Short Cantilever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Rugar, D., Zuger, O., Hoen, S., Yannoni, C.S., Vieth, H.M., Kendrick, R.D.: Force detection of nuclear magnetic resonance. Science 264, 1560–1563 (1994)CrossRefGoogle Scholar
  2. 2.
    Huang, X., Feng, X., Zorman, C., Mehregany, M., Roukes, M.: VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7, 247 (2005)CrossRefGoogle Scholar
  3. 3.
    Zolfagharkhani, G., Gaidarzhy, A., Degiovanni, P., Kettemann, S., Fulde, P., Mohanty, P.: Nanomechanical detection of itinerant electron spin flip. Nat. Nanotechnol. 3, 720–723 (2008)CrossRefGoogle Scholar
  4. 4.
    Naik, A., Hanay, M., Hiebert, W., Feng, X., Roukes, M.: Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4, 445–450 (2009)CrossRefGoogle Scholar
  5. 5.
    Wu, G., Ji, H., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M., Chakraborty, A., Majumdar, A.: Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. 98, 1560–1564 (2001)CrossRefGoogle Scholar
  6. 6.
    Montemagno, C., Bachand, G.: Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10, 225–231 (1999)CrossRefGoogle Scholar
  7. 7.
    Cleland, A.: Themomechanical noise limits on parametric sensing with nanomechanical resonators. New J. Phys. 7, 235 (2005)CrossRefGoogle Scholar
  8. 8.
    Yang, J.L., Ono, T., Esashi, M.: Energy dissipation in submicrometer thick single–crystal silicon cantilevers. IEEE J. Microelectromech. Syst. 11, 775–783 (2002)CrossRefGoogle Scholar
  9. 9.
    Stemme, G.: Resonant silicon sensors. J. Micromech. Microeng. 1, 113–125 (1991)CrossRefGoogle Scholar
  10. 10.
    Yang, J.L., Ono, T., Esashi, M.: Investigating surface stress: surface loss in ultrathin single-crystal silicon cantilevers. J. Vac. Sci. Technol. B 19, 551–556 (2001)CrossRefGoogle Scholar
  11. 11.
    Yang, J.L., Ono, T., Esashi, M.: Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers. Appl. Phys. Lett. 77, 3860–3862 (2000)CrossRefGoogle Scholar
  12. 12.
    Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W., Stipe, B.C., Rugar, D.: Quality factors in micro- and submicron- thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000)CrossRefGoogle Scholar
  13. 13.
    Ibach, H.: Adsorbate-induced surface stress. J. Vac. Sci. Technol. A12, 2240–2245 (1994)CrossRefGoogle Scholar
  14. 14.
    Ibach, H.: The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 193–263 (1997)CrossRefGoogle Scholar
  15. 15.
    Grossmann, A., Erley, W., Hannon, J.B., Ibach, H.: Giant surface stress in heteroepitaxial films: invalidation of a classical rule in epitaxy. Phys. Rev. Lett. 77, 127–130 (1996)CrossRefGoogle Scholar
  16. 16.
    Nowick, A.S., Berry, B.S.: Anelastic Relaxation in Crystalline Materials. Academic, New York (1972)Google Scholar
  17. 17.
    Boland, J.J.: Structure of H-saturated Si(100) surface. Phys. Rev. Lett. 65, 3325–3328 (1990)CrossRefGoogle Scholar
  18. 18.
    Boland, J.J.: Role of bond-strain in the chemistry of hydrogen on the Si(100) surface. Surf. Sci. 261, 17–28 (1992)CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Henry, J., Sengupta, D., Hines, M.: Methyl monolayers suppress mechanical energy dissipation in micromechanical silicon resonators. Appl. Phys. Lett. 85, 5736–5738 (2004)CrossRefGoogle Scholar
  20. 20.
    Henry, J., Wang, Y., Sengupta, D., Hines, M.: Understanding the effects of surface chemistry on q: mechanical energy dissipation in alkyl-terminated (c1–c18) micromechanical silicon resonators. J. Phys. Chem. B 111, 88–94 (2007)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Semiconductors, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of Transducer TechnologyShanghaiPeople’s Republic of China