Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Surface Plasmon Polariton-Enabled High-Performance Organic Optoelectronic Devices

  • Jing FengEmail author
  • Hong-Bo Sun
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100997-1


In organic optoelectronic devices, such as organic light-emitting devices (OLEDs) and organic solar cells (OSCs), high efficiency is one of the key issues for their applications, and much effort has been devoted to developing novel materials and device structures [1, 2]. It is well known that the majority of the generated light is trapped in OLEDs. Around 80 % of internally generated light is trapped in the form of waveguide (WG) modes in organic and indium tin oxide (ITO) anode layers and in surface plasmon polariton (SPP) modes associated with the metallic electrode/organic interface in OLEDs [3, 4]. In organic solar cells (OSCs), the active layer is generally less than 100 nm due to the short exciton diffusion length, which limits the efficiency of incident light absorption. A thicker active layer offers higher light absorption; however, it comes at the expense of lowered exciton harvesting [5, 6]. So far, there is still the greatest scope for significant improvements...


Power Conversion Efficiency Surface Plasmon Polariton Organic Solar Cell Metallic Electrode Light Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Park, S.H., et al.: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photon. 3, 297–303 (2009)CrossRefGoogle Scholar
  2. 2.
    D’Andrade, B.W., Forrest, S.R.: White organic light-emitting devices for solid-state lighting. Adv. Mater. 16, 1585–1595 (2004)CrossRefGoogle Scholar
  3. 3.
    Bi, Y.G., et al.: Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure. Appl. Phys. Lett. 100, 053304 (2012)CrossRefGoogle Scholar
  4. 4.
    Jin, Y., et al.: Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode. Adv. Mater. 24, 1187–1191 (2012)CrossRefGoogle Scholar
  5. 5.
    Liu, L., Stanchina, W.E., Li, G.: Effects of semiconducting and metallic single-walled carbon nanotubes on performance of bulk heterojunction organic solar cells. Appl. Phys. Lett. 94, 233309 (2009)CrossRefGoogle Scholar
  6. 6.
    Brabec, C.J., Sariciftci, N.S., Hummelen, J.C.: Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001)CrossRefGoogle Scholar
  7. 7.
    Nalwa, K.S., Park, J.M., Ho, K.M., Chaudhary, S.: On realizing higher efficiency polymer solar cells using a textured substrate platform. Adv. Mater. 23, 112 (2011)CrossRefGoogle Scholar
  8. 8.
    Baba, A., Wakatsuki, K., Shinbo, K., Kato, K., Kaneko, F.: Increased short-circuit current in grating-coupled surface plasmon resonance field-enhanced dye-sensitized solar cells. J. Mater. Chem. 21, 16436–16441 (2011)CrossRefGoogle Scholar
  9. 9.
    Sha, W.E.I., Choy, W.C.H., Chew, W.C.: A comprehensive study for the plasmonic thin-film solar cell with periodic structure. Opt. Express 18, 5993–6007 (2010)CrossRefGoogle Scholar
  10. 10.
    Yang, J., et al.: Plasmonic polymer tandem solar cell. ACS Nano 5, 6210–6217 (2011)CrossRefGoogle Scholar
  11. 11.
    Wang, D.H., et al.: Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Adv. Energy Mater. 1, 766–770 (2011)CrossRefGoogle Scholar
  12. 12.
    Hung, L.S., Tang, C.W., Mason, M.G., Raychaudhuri, P., Madathil, J.: Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes. Appl. Phys. Lett. 78, 544–546 (2001)CrossRefGoogle Scholar
  13. 13.
    Lim, S.F., Ke, L., Wang, W., Chua, S.J.: Correlation between dark spot growth and pinhole size in organic light-emitting diodes. Appl. Phys. Lett. 78, 2116–2118 (2001)CrossRefGoogle Scholar
  14. 14.
    Kolosov, D., et al.: Direct observation of structural changes in organic light emitting devices during degradation. J. Appl. Phys. 90, 3242–3247 (2001)CrossRefGoogle Scholar
  15. 15.
    Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)CrossRefGoogle Scholar
  16. 16.
    Hobson, P.A., Wedge, S., Wasey, J.A.E., Sage, I., Barnes, W.L.: Surface plasmon mediated emission from organic light-emitting diodes. Adv. Mater. 14, 1393–1396 (2002)CrossRefGoogle Scholar
  17. 17.
    Lupton, J.M., Matterson, B.J., Samuel, I.D.W., Jory, M.J., Barnes, W.L.: Bragg scattering from periodically microstructured light emitting diodes. Appl. Phys. Lett. 77, 3340–3342 (2000)CrossRefGoogle Scholar
  18. 18.
    Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)CrossRefGoogle Scholar
  19. 19.
    Hooper, I.R., Sambles, J.R.: Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces. Phys. Rev. B 70, 045421 (2004)CrossRefGoogle Scholar
  20. 20.
    Gruhlke, R.W., Holland, W.R., Hall, D.G.: Surface plasmon cross coupling in molecular fluorescence near a corrugated thin metal film. Phys. Rev. Lett. 56, 2838–2841 (1986)CrossRefGoogle Scholar
  21. 21.
    Wedge, S., Hooper, I.R., Sage, I., Barnes, W.L.: Light emission through a corrugated metal film: the role of cross-coupled surface plasmon polaritons. Phys. Rev. B 69, 245418 (2004)CrossRefGoogle Scholar
  22. 22.
    Kuang, P., et al.: A new architecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance. Adv. Mater. 23, 2469–2473 (2011)CrossRefGoogle Scholar
  23. 23.
    Chiappe, D., Toma, A., de Mongeot, F.B.: Transparent plasmonic nanowire electrodes via self-organised ion beam nanopatterning. Small 9, 913–919 (2013)CrossRefGoogle Scholar
  24. 24.
    Bi, Y.G., et al.: Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity. Adv. Mater. 25, 6969–6974 (2013)CrossRefGoogle Scholar
  25. 25.
    Yates, C.J., Samuel, I.D.W., Burn, P.L., Wedge, S., Barnes, W.L.: Surface plasmon-polariton mediated emission from phosphorescent dendrimer light-emitting diodes. Appl. Phys. Lett. 88, 161105 (2006)CrossRefGoogle Scholar
  26. 26.
    Bi, Y.G., et al.: Surface plasmon-polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation. Sci. Rep. 4, 7108 (2014)CrossRefGoogle Scholar
  27. 27.
    Bai, Y., et al.: Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation. Org. Electron. 12, 1927–1935 (2011)CrossRefGoogle Scholar
  28. 28.
    Koo, W.H., et al.: Light extraction of organic light emitting diodes by defective hexagonal-close-packed array. Adv. Funct. Mater. 22, 3454–3459 (2012)CrossRefGoogle Scholar
  29. 29.
    Helander, M.G., et al.: Oxidized gold thin films: an effective material for high-performance flexible organic optoelectronics. Adv. Mater. 22, 2037–2040 (2010)CrossRefGoogle Scholar
  30. 30.
    Peumans, P., Forrest, S.R.: Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 79, 126–128 (2001)CrossRefGoogle Scholar
  31. 31.
    Agrawal, M., Peumans, P.: Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells. Opt. Express 16, 5385–5396 (2008)CrossRefGoogle Scholar
  32. 32.
    Min, C., et al.: Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Appl. Phys. Lett. 96, 133302 (2010)CrossRefGoogle Scholar
  33. 33.
    Jin, Y., et al.: Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode. Appl. Phys. Lett. 101, 163303 (2012)CrossRefGoogle Scholar
  34. 34.
    Jin, Y., et al.: Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes. Adv. Opt. Mater. 1, 809–813 (2013)CrossRefGoogle Scholar
  35. 35.
    Rand, B.P., Peumans, P., Forrest, S.R.: Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004)CrossRefGoogle Scholar
  36. 36.
    Tong, S.W., et al.: Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer. Chem. Phys. Lett. 453, 73–76 (2008)CrossRefGoogle Scholar
  37. 37.
    Lu, L., Luo, Z., Xu, T., Yu, L.: Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett. 13, 59–64 (2013)CrossRefGoogle Scholar
  38. 38.
    Qingbo, Z., Jim Yang, L., Jun, Y., Chris, B., Jixuan, Z.: Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions. Nanotechnology 18, 245605 (2007)CrossRefGoogle Scholar
  39. 39.
    Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)CrossRefGoogle Scholar
  40. 40.
    Li, Z.Y., et al.: Structures and optical properties of 4–5 nm bimetallic AgAu nanoparticles. Faraday Discuss. 138, 363–373 (2008)CrossRefGoogle Scholar
  41. 41.
    Catchpole, K.R., Polman, A.: Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008)CrossRefGoogle Scholar
  42. 42.
    Xu, M., et al.: Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles. Appl. Phys. Lett. 105, 153303 (2014)CrossRefGoogle Scholar
  43. 43.
    Cheyns, D., Rand, B.P., Heremans, P.: Organic tandem solar cells with complementary absorbing layers and a high open-circuit voltage. Appl. Phys. Lett. 97, 033301 (2010)CrossRefGoogle Scholar
  44. 44.
    Sullivan, P., et al.: Ultra-high voltage multijunction organic solar cells for low-power electronic applications. Adv. Energy Mater. 3, 239–244 (2013)CrossRefGoogle Scholar
  45. 45.
    Dou, L., et al.: Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photon. 6, 180–185 (2012)CrossRefGoogle Scholar
  46. 46.
    Duche, D., et al.: Improving light absorption in organic solar cells by plasmonic contribution. Solar Energy Mater. Solar Cells 93, 1377–1382 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina