Skip to main content

Nonlinear Parametric MEMS

  • Living reference work entry
  • First Online:
  • 163 Accesses

Synonyms

Parametrically excited nonlinear MEMS resonators

Definition

Nonlinear MEMS resonators excited by parametric excitation so its effective impedance is periodically modified by time-varying drive parameters

Background, Benefits, and Applications

In the rich context of physical and engineering disciplines, the first decade of systematic study on the nonlinear problems and parametrically excited systems dates back to the mid-nineteenth century, with the work of Mathieu [1], Rayleigh [2], Stoker [3], and Nayfeh [4] as important landmarks. Owing to the use of a considerable amount of exemplary nonlinear problems, the forerunners provided intuitive concepts, such as self-excited systems, forced oscillations, parametric pump, and nonlinear restoring force, and backed them up with rigorous theorems. Recent work on the parametric resonance, especially in the context of resonant microelectromechanical systems (MEMSs), investigates the utility and advantage of exploiting parametric...

This is a preview of subscription content, log in via an institution.

References

  1. Mathieu, E.: Memoire sur le mouvement vibratoire d’une membrane de forme elliptique. J. Math. Pures et Appl. 13, 137–203 (1868)

    Google Scholar 

  2. Rayleigh, L.: On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure. Lond. Edinb. Dublin Philos. Mag. J. Sci. (Fifth Series) 24(147), 145–159 (1887)

    Article  Google Scholar 

  3. Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems. Wiley, New York (1950)

    Google Scholar 

  4. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley & sons, New York (1979)

    Google Scholar 

  5. Zhang, W., Turner, K.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sensors Actuators A Phys. 122(1), 23–30 (2005)

    Article  Google Scholar 

  6. Li, L., Holthoff, E., Shaw, L., Burgner, C., Turner, K.: Noise squeezing controlled parametric bifurcation tracking of MIP-coated microbeam MEMS sensor for TNT explosive gas sensing. J. Microelectromech. Syst. (2014). doi:10.1109/JMEMS.2014.2310206

    Google Scholar 

  7. Kacem, N., Hentz, S., Baguet, S., Dufour, R.: Forced large amplitude periodic vibrations of non-linear Mathieu resonators for microgyroscope applications. Int. J. Non Linear Mech. 46(10), 1347–1355 (2011)

    Article  Google Scholar 

  8. Turner, K., Miller, S., Hartwell, P., MacDonald, N., Strogatz, S., Adams, S.: Five parametric resonances in a microelectromechanical system. Nature 396(6707), 149–152 (1998)

    Article  Google Scholar 

  9. Guo, C., Fedder, G.: Bi-state control of parametric resonance. Appl. Phys. Lett. 103(18), 183512 (2013)

    Article  Google Scholar 

  10. Ataman, C., Urey, H.: Modeling and characterization of comb-actuated resonant microscanners. J. Micromech. Microeng. 16(1), 9–16 (2006)

    Article  Google Scholar 

  11. Yie, Z., Zielke, M., Burgner, C., Turner, K.: Comparison of parametric and linear mass detection in the presence of detection noise. J. Micromech. Microeng. 21, 025027 (2011)

    Article  Google Scholar 

  12. Requa, M.: Parametric resonance in microcantilevers for applications in mass sensing. PhD dissertation, University of California, Santa Barbara (2006)

    Google Scholar 

  13. Prakash, G., Raman, A., Rhoads, J., Reifenberger, R.: Parametric noise squeezing and parametric resonance of microcantilevers in air and liquid environments. Rev. Sci. Instrum. 83(6), 065109 (2012)

    Article  Google Scholar 

  14. Thompson, M., Horsley, D.: Lorentz force MEMS magnetometer. Hilton Head Workshop 2010: A Solid-State Sensors, Actuators and Microsystems Workshop, pp. 45–48 (2010)

    Google Scholar 

  15. Koskenvuori, M., Tittonen, I.: GHz-range FSK-reception with microelectromechanical resonators. Sensors Actuators A Phys. 142(1), 346–351 (2008)

    Article  Google Scholar 

  16. DeMartini, B., Butterfield, H., Moehlis, J., Turner, K.: Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation. J. Microelectromech. Syst. 16(6), 1314–1323 (2007)

    Article  Google Scholar 

  17. Nayfeh, A.: Introduction to Perturbation Technique, pp. 234–256. Wiley, New York (1981)

    Google Scholar 

  18. Rhoads, J., Shaw, S., Turner, K., Moehlis, J., DeMartini, B., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296(4–5), 797–829 (2006)

    Article  Google Scholar 

  19. Guo, C., Fedder, G.: Behavioral modeling of a CMOS-MEMS nonlinear parametric resonator. J. Microelectromech. Syst. 22(6), 1447–1457 (2013)

    Article  Google Scholar 

  20. Adams, S., Bertsch, F., MacDonald, N.: Independent tuning of linear and nonlinear stiffness coefficients. J. Microelectromech. Syst. 7(2), 172–180 (1998)

    Article  Google Scholar 

  21. Guo, C., Fedder, G.: A quadratic-shaped-finger comb parametric resonator. J. Micromech. Microeng. 23(9), 095007 (2013)

    Article  Google Scholar 

  22. Hirano, T., Furuhata, T., Gabriel, K., Fujita, H.: Design, fabrication, and operation of submicron gap comb-drive microactuators. J. Microelectromech. Syst. 1(1), 52–59 (1992)

    Article  Google Scholar 

  23. Jensen, B., Mutlu, S., Miller, S., Kurabayashi, K., Allen, J.: Shaped comb fingers for tailored electromechanical restoring force. J. Microelectromech. Syst. 12(3), 373–383 (2003)

    Article  Google Scholar 

  24. Kaajakari, V., Lal, A.: Parametric excitation of circular micromachined polycrystalline silicon disks. Appl. Phys. Lett. 85(17), 3923–3925 (2004)

    Article  Google Scholar 

  25. Requa, M., Turner, K.: Electromechanically driven and sensed parametric resonance in silicon microcantilevers. Appl. Phys. Lett. 88(26), 263508 (2006)

    Article  Google Scholar 

  26. Rhoads, J., Kumar, V., Shaw, S., Turner, K.: The non-linear dynamics of electromagnetically actuated microbeam resonators with purely parametric excitations. Int. J. Non Linear Mech. 55, 79–89 (2013)

    Article  Google Scholar 

  27. Zalalutdinov, M., Olkhovets, A., Zehnder, A., Ilic, B., Czaplewski, D., Craighead, H., Parpia, J.: Optically pumped parametric amplification for micromechanical oscillators. Appl. Phys. Lett. 78(20), 3142 (2001)

    Article  Google Scholar 

  28. Rhoads, J., Shaw, S., Turner, K.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst. Meas. Control. 132(3), 034001 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congzhong Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Guo, C. (2016). Nonlinear Parametric MEMS. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100994-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100994-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics