Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Plasmonic Amplification for Fluorescence Bioassays Utilizing Propagating Surface Plasmons

  • Jakub Dostalek
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100986-1



Plasmonics offers efficient means for enhancing sensitivity of fluorescence bioassays for detection of chemical and biological analytes. In this method, specific capture of target analyte from analyzed liquid sample at metallic sensor surface with attached recognition elements is observed by using fluorophore labels (e.g., organic dyes or quantum dots). These labels are probed by the confined field of surface plasmons that originate from collective oscillations of charge density at a surface of metallic films or metallic nanoparticles. The excitation of surface plasmons is accompanied with strongly increased intensity of electromagnetic field which couples with fluorophores. The combination of surface plasmon-enhanced excitation rate fluorophore absorption wavelength, improved quantum yield, and directional emission at the...


Surface Plasmon Resonance Nanoimprint Lithography Plasmonic Structure Thin Metallic Film Surface Plasmon Resonance Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Drexhage, K.H.: Interaction of light with monomolecular dye layers. In: Wolf, E. (ed.) Progress in Optics XII. North-Holland, Amsterdam (1974)Google Scholar
  2. 2.
    Chance, R.R., Prock, A., Silbey, R.: Lifetime of an emitting molecule near a partially reflecting surface. J. Chem. Phys. 60, 2744 (1974)CrossRefGoogle Scholar
  3. 3.
    Weber, W.H., Eagen, C.F.: Energy-transfer from an excited dye molecule to the surface-plasmons of an adjacent metal. Opt. Lett. 4, 236–238 (1979)CrossRefGoogle Scholar
  4. 4.
    Knoll, W., Philpott, M.R., Swalen, J.D.: Emission of light from Ag metal gratings coated with dye monolayer assemblies. J. Chem. Phys. 75, 4795–4799 (1981)CrossRefGoogle Scholar
  5. 5.
    Kitson, S.C., Barnes, W.L., Sambles, J.R.: Photoluminescence from dye molecules on silver gratings. Opt. Commun. 122, 147–154 (1996)CrossRefGoogle Scholar
  6. 6.
    Attridge, J.W., Daniels, P.B., Deacon, J.K., Robinson, G.A., Davidson, G.P.: Sensitivity enhancement of optical immunosensors by the use of a surface-plasmon resonance fluoroimmunoassay. Biosens. Bioelectron. 6, 201–214 (1991)CrossRefGoogle Scholar
  7. 7.
    Liebermann, T., Knoll, W.: Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids. Surf. A 171, 115–130 (2000)CrossRefGoogle Scholar
  8. 8.
    Yu, F., Persson, B., Lofas, S., Knoll, W.: Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J. Am. Chem. Soc. 126, 8902–8903 (2004)CrossRefGoogle Scholar
  9. 9.
    Matveeva, E.G., Gryczynski, Z., Lakowicz, J.R.: Myoglobin immunoassay based on metal particle-enhanced fluorescence. J. Immunol. Methods 302, 26–35 (2005)CrossRefGoogle Scholar
  10. 10.
    Sarid, D.: Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett. 47, 1927–1930 (1981)CrossRefGoogle Scholar
  11. 11.
    Nenninger, G.G., Tobiska, P., Homola, J., Yee, S.S.: Long-range surface plasmons for high-resolution surface plasmon resonance sensors. Sens. Actuators B 74, 145–151 (2001)CrossRefGoogle Scholar
  12. 12.
    Kasry, A., Knoll, W.: Long range surface plasmon fluorescence spectroscopy. Appl. Phys. Lett. 89, 101106 (2006)CrossRefGoogle Scholar
  13. 13.
    Dostalek, J., Kasry, A., Knoll, W.: Long range surface plasmons for observation of biomolecular binding events at metallic surfaces. Plasmonics 2, 97–106 (2007)CrossRefGoogle Scholar
  14. 14.
    Ward, D.R., Hueser, F., Pauly, F., Carlos Cuevas, J., Natelson, D.: Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 5, 732–736 (2010)CrossRefGoogle Scholar
  15. 15.
    Bharadwaj, P., Novotny, L.: Spectral dependence of single molecule fluorescence enhancement. Opt. Express 15, 14266–14274 (2007)CrossRefGoogle Scholar
  16. 16.
    Bauch, M., Dostalek, J.: Collective localized surface plasmons for high performance fluorescence biosensing. Opt. Express 21, 20470–20483 (2013)CrossRefGoogle Scholar
  17. 17.
    Matveeva, E.G., Gryczynski, Z., Malicka, J., Lukomska, J., Makowiec, S., Berndt, K.W., Lakowicz, J.R., Gryczynski, I.: Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Anal. Biochem. 344, 161–167 (2005)CrossRefGoogle Scholar
  18. 18.
    Yuk, J.S., MacCraith, B.D., McDonagh, C.: Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip. Biosens. Bioelectron. 26, 3213–3218 (2011)CrossRefGoogle Scholar
  19. 19.
    Toma, K., Vala, M., Adam, P., Homola, J., Knoll, W., Dostalek, J.: Compact surface plasmon-enhanced fluorescence biochip. Opt. Express 21, 10121–10132 (2013)CrossRefGoogle Scholar
  20. 20.
    Liebermann, T., Knoll, W., Sluka, P., Herrmann, R.: Complement hybridization from solution to surface-attached probe-oligonucleotides observed by surface-plasmon-field-enhanced fluorescence spectroscopy. Colloids Surf. A 169, 337–350 (2000)CrossRefGoogle Scholar
  21. 21.
    Huang, C.J., Sessitsch, A., Dostalek, J., Knoll, W.: Long range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7. Anal. Chem. 83, 674–677 (2011)CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Dostalek, J., Knoll, W.: Biosensor for detection of aflatoxin M1 in milk based on long range surface plasmon enhanced fluorescence spectroscopy. Biosens. Bioelectron. 24, 2264–2267 (2009)CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Brunsen, A., Jonas, U., Dostalek, J., Knoll, W.: Prostate specific antigen biosensor based on long range surface plasmon-enhanced fluorescence spectroscopy and dextran hydrogel binding matrix. Anal. Chem. 81, 9625–9632 (2009)CrossRefGoogle Scholar
  24. 24.
    Huang, C.J., Sessitsch, A., Knoll, W., Dostalek, J.: SPR bacterial pathogen biosensors: the importance of fluidic conditions and probing depth. Talanta 122 (2014)Google Scholar
  25. 25.
    Tawa, K., Hori, H., Kintaka, K., Kiyosue, K., Tatsu, Y., Nishii, J.: Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance. Opt. Express 16, 9781–9790 (2008)CrossRefGoogle Scholar
  26. 26.
    Bauch, M., Hageneder, S., Dostalek, J.: Plasmonic amplification for bioassays with epi-fluorescence readout. Opt. Express 22(26), 32026–32038 (2014)CrossRefGoogle Scholar
  27. 27.
    Boltasseva, A.: Plasmonic components fabrication via nanoimprint. J. Opt. Pure Appl. Opt. 11, 11 (2009)CrossRefGoogle Scholar
  28. 28.
    Zhang, B., Kumar, R.B., Dai, H.J., Feldman, B.J.: A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat. Med. 20, 948–953 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.BioSensor TechnologiesAIT-Austrian Institute of Technology GmbHViennaAustria