Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Upconversion Enhancement in Lanthanide-Doped Nanoparticles Using Nanoplasmonics

  • Shadi Rohani
  • Marta Quintanilla
  • Rafik Naccache
  • Roberto Morandotti
  • Luca Razzari
  • Fiorenzo Vetrone
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100981-1

Synonyms

Definition

Upconversion is a process in which the sequential absorption of two (or more) low-energy photons leads to the emission of one photon with higher energy. The upconversion process can occur in materials such as lanthanide-doped nanoparticles and can be enhanced by the strong local electric field found in the proximity of metallic (plasmonic) nanostructures.

Overview

Nanomaterials have attracted considerable attention due to their size-dependent properties, allowing many interesting and sometimes novel features to be observed [1]. Of particular interest are luminescent nanoparticles as they have been touted to find widespread integration in applications ranging from the realization of display devices to bioimaging [2]. One particular class of luminescent nanomaterials that has garnered considerable interest is the lanthanide (Ln3+)-doped upconverting nanoparticles (UCNPs). These UCNPs are...

Keywords

Excited State Absorption Metallic Nanostructure Upconversion Emission Plasmonic Nanostructures Emission Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Cao, G.: Nanostructures and Nanomaterials: Synthesis, Properties and Applications, p. 581. Imperial College Press, London (2004)CrossRefGoogle Scholar
  2. 2.
    Chen, X., Liu, Y., Tu, D.: Lanthanide-Doped Luminescent Nanomaterials: From Fundamentals to Bioapplications (Nanomedicine and Nanotoxicology). Springer, Berlin/Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Auzel, F.: Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139 (2004)CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Ai, K., Lu, L.: Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting. Nanoscale 3, 4804 (2011)CrossRefGoogle Scholar
  5. 5.
    Boyer, J.-C., van Veggel, F.C.: Absolute quantum yield measurements of colloidal NaYF4:Er3+/Yb3+ upconverting nanoparticles. Nanoscale 2, 1417 (2010)CrossRefGoogle Scholar
  6. 6.
    Liu, G., Jacquier, B. (eds.): Spectroscopic Properties of Rare Earths in Optical Materials. Springer, Tsinghua (2005)Google Scholar
  7. 7.
    Shvets, G., Tsukerman, I. (eds.): Plasmonics and Plasmonic Metamaterials. Analysis and Applications, vol. 4. World Scientific, Singapore (2012)Google Scholar
  8. 8.
    Fisher, S., Hallermann, F., Eichellkraut, T., Plessen, G.V., Kramer, K.W., Biner, D., Steinkemper, H., Hermle, M., Goldschmidth, J.C.: Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions. Opt. Express 20, 271 (2012)CrossRefGoogle Scholar
  9. 9.
    Anger, P., Bharadwaj, P., Novotny, L.: Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)CrossRefGoogle Scholar
  10. 10.
    Garcia, M.A.: Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44, 283001 (2011)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Pollnau, M., Gamelin, D.R., Lüthi, S.R., Güdel, H.U.: Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B: Condens. Matter 61, 3337 (2000)CrossRefGoogle Scholar
  13. 13.
    Esteban, R., Laroche, M., Greffet, J.J.: Influence of metallic nanoparticles on upconversion processes. J. Appl. Phys. 105, 033107 (2009)CrossRefGoogle Scholar
  14. 14.
    Rohani, S.: Coupling of gold nanorods with lanthanide-doped upconverting nanoparticles for luminescence enhancement and nanothermometry. Master’s Thesis, INRS-EMT (2015)Google Scholar
  15. 15.
    Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar
  16. 16.
    Forster, T.: Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 437, 55 (1948)CrossRefGoogle Scholar
  17. 17.
    Saboktakin, M., Ye, X., Oh, S.J., Hong, S.-H., Fafarman, A.T., Chettiar, U.K., Engheta, N., Murray, C.B., Kagan, C.R.: Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS Nano 6, 8758 (2012)CrossRefGoogle Scholar
  18. 18.
    Mertens, H., Polman, A.: Strong luminescence quantum efficiency enhancement near prolate metal nanoparticles: dipolar versus higher-order modes. J. Appl. Phys. 105, 044302 (2009)CrossRefGoogle Scholar
  19. 19.
    Mertens, H., Koenderink, A.F., Polman, A.: Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. Phys. Rev. B 76, 115123 (2007)CrossRefGoogle Scholar
  20. 20.
    Lu, D., Cho, S.K., Ahn, S., Brun, L., Summers, C.J., Park, W.: Plasmon enhancement mechanism for the upconversion processes in NaYF4:Yb(3+), Er(3+) nanoparticles: Maxwell versus Forster. ACS Nano 8, 7780 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Shadi Rohani
    • 1
  • Marta Quintanilla
    • 1
  • Rafik Naccache
    • 1
  • Roberto Morandotti
    • 1
  • Luca Razzari
    • 1
  • Fiorenzo Vetrone
    • 1
  1. 1.Institut National de la Recherche Scientifique – Énergie Matériaux et TélécommunicationsUniversité du QuébecVarennesCanada