Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Conductivity of Metal Nanowires Studied by Infrared Plasmon-Polariton Spectroscopy

  • J. Vogt
  • C. Huck
  • F. Neubrech
  • A. Pucci
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100977-1

Synonyms

Definition

Metal nanorods of a few micron length and a much smaller diameter feature strong plasmonic resonances in the infrared region and therefore act rather similar to radio antennas, but the spectral shape of such resonances is related to the conductivity of the nanoantenna material. In the scientific literature, analytic approaches exist which explain the relationship between the electronic conductivity and the resonance spectrum that is due to plasmon polaritons as mixed excitations from free electrons and photons.

Introduction

Metal nanowires are produced, for example, by electron-beam lithography (EBL), electrochemical, and wet chemical methods [ 1]. Usually they are inspected by scanning electron microscopy (SEM) or atomic force microscopy (AFM) in order to get geometric information; see Fig. 1. But, neither SEM nor AFM can deliver conductivity information of a nanoobject. Electrical...

Keywords

Local Surface Plasmon Resonance Skin Depth Electron Beam Lithography Optical Antenna Effective Dielectric Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Pucci, A., Neubrech, F., Aizpurua, J., Cornelius, T., de la Chapelle, M.L.: Electromagnetic nanowire resonances for field-enhanced spectroscopy. In: Wang, Z. (ed.) One-Dimensional Nanostructures, pp. 175–216. Springer, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Steinhögl, W., Schindler, G., Steinlesberger, G., Engelhardt, M.: Size-dependent resistivity of metallic wires in the mesoscopic range. Phys. Rev. B 66, 075414 (2002)CrossRefGoogle Scholar
  3. 3.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Sounders College Publishing, Orlando (1976)Google Scholar
  4. 4.
    Abeles, F.: Optical properties of metals. In: Abeles, F. (ed.) Optical Properties of Solids, pp. 93–162. North Holland, Amsterdam (1972)Google Scholar
  5. 5.
    Ordal, M.A., Bell, R.J., Alexander Jr., R.W., Long, L.L., Querry, M.R.: Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Optics 24, 4493–4499 (1985)CrossRefGoogle Scholar
  6. 6.
    Young, C.-Y.: The frequency and temperature dependence of the optical effective mass of conduction electrons in simple metals. J. Phys. Chem. Solids 30, 2765–2769 (1969)CrossRefGoogle Scholar
  7. 7.
    Ziman, J.M.: Principles of the Theory of Solids. Cambridge University Press, Cambridge (1979)Google Scholar
  8. 8.
    McKay, J.A., Rayne, J.A.: Temperature dependence of the infrared absorptivity of the noble metals. Phys. Rev. B 13, 673–685 (1976)CrossRefGoogle Scholar
  9. 9.
    Bittar, A.: The Bruggeman Effective Medium Theory Applied to the Optical Properties of Inhomogeneous Materials. Physics and Engineering Laboratory, Lower Hutt (1984)Google Scholar
  10. 10.
    Zhang, X., Stroud, D.: Optical and electrical properties of thin films. Phys. Rev. B 52, 2131–2137 (1995)CrossRefGoogle Scholar
  11. 11.
    Novotny, L.: Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007)CrossRefGoogle Scholar
  12. 12.
    Sarid, D., Challener, W.A.: Modern Introduction to Surface Plasmons. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  13. 13.
    Kats, M.A., Yu, N., Genevet, P., Gaburro, Z., Capasso, F.: Effect of radiation damping on the spectral response of plasmonic components. Opt. Express 19, 21748–21753 (2011)CrossRefGoogle Scholar
  14. 14.
    Doyle, W.T.: Electrodynamic response of metal spheres. J. Opt. Soc. Am. A 2, 1031–1034 (1985)CrossRefGoogle Scholar
  15. 15.
    Pelton, M., Bryant, G.: Introduction to Metal-Nanoparticle Plasmonics. Wiley, Hoboken (2013)Google Scholar
  16. 16.
    Weber, D., Pucci, A.: Antenna interaction in the infrared. In: de la Chapelle, M.L., Pucci, A. (eds.) Nanoantenna: Plasmon -Enhanced Spectroscopies for Biotechnological Applications, pp. 175–194. Pan Stanford Publishing, Singapore (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Kirchhoff Institute for PhysicsHeidelberg UniversityHeidelbergGermany
  2. 2.4th Physics InstituteUniversity of StuttgartStuttgartGermany