Skip to main content

Computational Chemistry for Drug Discovery

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Drug design; Molecular modeling

Definition

Computational chemistry uses physics-based algorithms and computers to simulate chemical events and calculate chemical properties of atoms and molecules. In drug design and discovery, diverse computational chemistry approaches are used to calculate and predict events, such as the drug binding to its target and the chemical properties for designing potential new drugs.

Overview

Computational methods are nowadays routinely used to accelerate the long and costly drug discovery process. Typically, once the drug discovery target is selected, drug discovery activities are divided into those for (1) the hit identification phase, in which the aim is the identification of chemical compounds with a promising activity toward the target; (2) the lead generation phase, in which hit compounds are improved in potency against the target; and, finally, (3) the lead optimizationphase, in which lead compounds are optimized, generating drug-like...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jorgensen, W.L.: The many roles of computation in drug discovery. Science 303, 1813–1818 (2004)

    Article  Google Scholar 

  2. Jorgensen, W.L.: Efficient drug lead discovery and optimization. Acc. Chem. Res. 42, 724–733 (2009)

    Article  Google Scholar 

  3. Frenkel, D., Smit, B.: Understanding Molecular Simulation. Academic, San Diego (2002)

    Google Scholar 

  4. Jensen, F.: An Introduction to Computational Chemistry. Wiley, Chichester, England (1998)

    Google Scholar 

  5. Leach, A.R.: Molecular Modelling: Principles and Applications, 2nd edn. Prentice Hall, New York (2001)

    Google Scholar 

  6. Carloni, P., Rothlisberger, U., Parrinello, M.: The role and perspective of ab initio molecular dynamics in the study of biological systems. Acc. Chem. Res. 35, 455–464 (2002)

    Article  Google Scholar 

  7. Nichols, S.E., Baron, R., Ivetac, A., McCammon, J.A.: Predictive power of molecular dynamics receptor structures in virtual screening. J. Chem. Inf. Model. 51, 1439–1446 (2011)

    Article  Google Scholar 

  8. Schneider, G., Fechner, U.: Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 4, 649–663 (2005)

    Article  Google Scholar 

  9. Palermo, G., Branduardi, D., Masetti, M., Lodola, A., Mor, M., Piomelli, D., Cavalli, A., De Vivo, M.: Covalent inhibitors of fatty acid amide hydrolase: a rationale for the activity of piperidine and piperazine aryl ureas. J. Med. Chem. 54, 6612–6623 (2011)

    Article  Google Scholar 

  10. Palermo, G., Rothlisberger, U., Cavalli, A., Vivo, M. D.: Computational insights into function and inhibition of fatty acid amide hydrolase. Eur. J. Med. Chem. 91, 15–26 (2015)

    Google Scholar 

  11. Borhani, D.W., Shaw, D.E.: The future of molecular dynamics simulations in drug discovery. J. Comput. Aided Mol. Des. 26, 15–26 (2012)

    Article  Google Scholar 

  12. De Vivo, M., Dal Peraro, M., Klein, M.L.: Phosphodiester cleavage in ribonuclease H occurs via an associative two-metal-aided catalytic mechanism. J. Am. Chem. Soc. 130, 10955–10962 (2008)

    Article  Google Scholar 

  13. De Vivo, M., Ensing, B., Dal Peraro, M., Gomez, G.A., Christianson, D.W., Klein, M.L.: Proton shuttles and phosphatase activity in soluble epoxide hydrolase. J. Am. Chem. Soc. 129, 387–394 (2007)

    Article  Google Scholar 

  14. De Vivo, M., Ensing, B., Klein, M.L.: Computational study of phosphatase activity in soluble epoxide hydrolase: high efficiency through a water bridge mediated proton shuttle. J. Am. Chem. Soc. 127, 11226–11227 (2005)

    Article  Google Scholar 

  15. Palermo, G., Campomanes, P., Cavalli, A., Rothlisberger, U., De Vivo, M.: Anandamide hydrolysis in FAAH reveals a dual strategy for efficient enzyme-assisted amide bond cleavage via nitrogen inversion. J. Phys. Chem. B.119(3), 789–801 (2015)

    Google Scholar 

  16. Ensing, B., De Vivo, M., Liu, Z.W., Moore, P., Klein, M.L.: Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc. Chem. Res. 39, 73–81 (2006)

    Article  Google Scholar 

  17. Jorgensen, W.L., Thomas, L.L.: Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theory Comput. 4, 869–876 (2008)

    Article  Google Scholar 

  18. De Vivo, M.: Bridging quantum mechanics and structure-based drug design. Front. Biosci. Landmrk. 16, 1619–1633 (2011)

    Article  Google Scholar 

  19. Palermo, G., Stenta, M., Cavalli, A., Dal Peraro, M., De Vivo, M.: Molecular simulations highlight the role of metals in catalysis and inhibition of type II Topoisomerase. J. Chem. Theory Comput. 9, 857–862 (2013)

    Article  Google Scholar 

  20. Lodola, A., De Vivo, M.: The increasing role of QM/MM in drug discovery. Adv. Protein Chem. Struct. Biol. 87, 337–662 (2012)

    Article  Google Scholar 

  21. Nantasenamat, C., Isarankura-Na-Ayudhya, C., Prachayasittikul, V.: Advances in computational methods to predict the biological activity of compounds. Expert Opin. Drug Discov. 5, 633–654 (2010)

    Article  Google Scholar 

  22. Lipinski, C.: Chris Lipinski. Interview by Peter Kirkpatrick. Nat. Rev. Drug Discov. 11, 900–901 (2012)

    Article  Google Scholar 

  23. Mapelli, M., Massimiliano, L., Crovace, C., Seeliger, M.A., Tsai, L.H., Meijer, L., Musacchio, A.: Mechanism of CDK5/p25 binding by CDK inhibitors. J. Med. Chem. 48, 671–679 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco De Vivo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Palermo, G., De Vivo, M. (2015). Computational Chemistry for Drug Discovery. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100975-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100975-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics