Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Computational Chemistry for Drug Discovery

  • Giulia Palermo
  • Marco De Vivo
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100975-1

Synonyms

Definition

Computational chemistry uses physics-based algorithms and computers to simulate chemical events and calculate chemical properties of atoms and molecules. In drug design and discovery, diverse computational chemistry approaches are used to calculate and predict events, such as the drug binding to its target and the chemical properties for designing potential new drugs.

Overview

Computational methods are nowadays routinely used to accelerate the long and costly drug discovery process. Typically, once the drug discovery target is selected, drug discovery activities are divided into those for (1) the hit identification phase, in which the aim is the identification of chemical compounds with a promising activity toward the target; (2) the lead generation phase, in which hit compounds are improved in potency against the target; and, finally, (3) the lead optimizationphase, in which lead compounds are optimized, generating drug-like...

Keywords

Monte Carlo Virtual Screening Quantum Mechanic Method Free Energy Landscape Free Energy Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Jorgensen, W.L.: The many roles of computation in drug discovery. Science 303, 1813–1818 (2004)CrossRefGoogle Scholar
  2. 2.
    Jorgensen, W.L.: Efficient drug lead discovery and optimization. Acc. Chem. Res. 42, 724–733 (2009)CrossRefGoogle Scholar
  3. 3.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation. Academic, San Diego (2002)Google Scholar
  4. 4.
    Jensen, F.: An Introduction to Computational Chemistry. Wiley, Chichester, England (1998)Google Scholar
  5. 5.
    Leach, A.R.: Molecular Modelling: Principles and Applications, 2nd edn. Prentice Hall, New York (2001)Google Scholar
  6. 6.
    Carloni, P., Rothlisberger, U., Parrinello, M.: The role and perspective of ab initio molecular dynamics in the study of biological systems. Acc. Chem. Res. 35, 455–464 (2002)CrossRefGoogle Scholar
  7. 7.
    Nichols, S.E., Baron, R., Ivetac, A., McCammon, J.A.: Predictive power of molecular dynamics receptor structures in virtual screening. J. Chem. Inf. Model. 51, 1439–1446 (2011)CrossRefGoogle Scholar
  8. 8.
    Schneider, G., Fechner, U.: Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov. 4, 649–663 (2005)CrossRefGoogle Scholar
  9. 9.
    Palermo, G., Branduardi, D., Masetti, M., Lodola, A., Mor, M., Piomelli, D., Cavalli, A., De Vivo, M.: Covalent inhibitors of fatty acid amide hydrolase: a rationale for the activity of piperidine and piperazine aryl ureas. J. Med. Chem. 54, 6612–6623 (2011)CrossRefGoogle Scholar
  10. 10.
    Palermo, G., Rothlisberger, U., Cavalli, A., Vivo, M. D.: Computational insights into function and inhibition of fatty acid amide hydrolase. Eur. J. Med. Chem. 91, 15–26 (2015)Google Scholar
  11. 11.
    Borhani, D.W., Shaw, D.E.: The future of molecular dynamics simulations in drug discovery. J. Comput. Aided Mol. Des. 26, 15–26 (2012)CrossRefGoogle Scholar
  12. 12.
    De Vivo, M., Dal Peraro, M., Klein, M.L.: Phosphodiester cleavage in ribonuclease H occurs via an associative two-metal-aided catalytic mechanism. J. Am. Chem. Soc. 130, 10955–10962 (2008)CrossRefGoogle Scholar
  13. 13.
    De Vivo, M., Ensing, B., Dal Peraro, M., Gomez, G.A., Christianson, D.W., Klein, M.L.: Proton shuttles and phosphatase activity in soluble epoxide hydrolase. J. Am. Chem. Soc. 129, 387–394 (2007)CrossRefGoogle Scholar
  14. 14.
    De Vivo, M., Ensing, B., Klein, M.L.: Computational study of phosphatase activity in soluble epoxide hydrolase: high efficiency through a water bridge mediated proton shuttle. J. Am. Chem. Soc. 127, 11226–11227 (2005)CrossRefGoogle Scholar
  15. 15.
    Palermo, G., Campomanes, P., Cavalli, A., Rothlisberger, U., De Vivo, M.: Anandamide hydrolysis in FAAH reveals a dual strategy for efficient enzyme-assisted amide bond cleavage via nitrogen inversion. J. Phys. Chem. B.119(3), 789–801 (2015)Google Scholar
  16. 16.
    Ensing, B., De Vivo, M., Liu, Z.W., Moore, P., Klein, M.L.: Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc. Chem. Res. 39, 73–81 (2006)CrossRefGoogle Scholar
  17. 17.
    Jorgensen, W.L., Thomas, L.L.: Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theory Comput. 4, 869–876 (2008)CrossRefGoogle Scholar
  18. 18.
    De Vivo, M.: Bridging quantum mechanics and structure-based drug design. Front. Biosci. Landmrk. 16, 1619–1633 (2011)CrossRefGoogle Scholar
  19. 19.
    Palermo, G., Stenta, M., Cavalli, A., Dal Peraro, M., De Vivo, M.: Molecular simulations highlight the role of metals in catalysis and inhibition of type II Topoisomerase. J. Chem. Theory Comput. 9, 857–862 (2013)CrossRefGoogle Scholar
  20. 20.
    Lodola, A., De Vivo, M.: The increasing role of QM/MM in drug discovery. Adv. Protein Chem. Struct. Biol. 87, 337–662 (2012)CrossRefGoogle Scholar
  21. 21.
    Nantasenamat, C., Isarankura-Na-Ayudhya, C., Prachayasittikul, V.: Advances in computational methods to predict the biological activity of compounds. Expert Opin. Drug Discov. 5, 633–654 (2010)CrossRefGoogle Scholar
  22. 22.
    Lipinski, C.: Chris Lipinski. Interview by Peter Kirkpatrick. Nat. Rev. Drug Discov. 11, 900–901 (2012)CrossRefGoogle Scholar
  23. 23.
    Mapelli, M., Massimiliano, L., Crovace, C., Seeliger, M.A., Tsai, L.H., Meijer, L., Musacchio, A.: Mechanism of CDK5/p25 binding by CDK inhibitors. J. Med. Chem. 48, 671–679 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Drug Discovery and Development - CompuNetIstituto Italiano di TecnologiaGenoaItaly
  2. 2.Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneLausanneSwitzerland