Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Ecotoxicity of Zinc Oxide Nanoparticles in the Marine Environment

  • Mana Man Na Yung
  • Catherine Mouneyrac
  • Kenneth Mei Yee Leung
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100970-1



Ecotoxicity is generally defined as the subject in the field of ecotoxicology which studies the potential for biological, chemical, or physical stressors to affect ecosystems. The study of ecotoxicity of nanoparticles focuses on the toxic effects of nanoparticles on wildlife and their ecosystems and uncovers the natural uptake and toxic mechanisms of nanoparticles in organisms. It also investigates the influences of environmental factors on bioavailability and toxicity of the nanoparticles to the organisms. Nanoparticles are defined as particles having one or more dimensions between 1 and 100 nm that show distinct properties from their bulk counterparts of the same materials [1]. The use of nanoparticles in manufactured products has grown dramatically in the last decade. The continuously growing market for zinc oxide nanoparticles (ZnO-NPs), driven mainly by increasing demand...


Reactive Oxygen Species Humic Acid Photocatalytic Activity Marine Organism Toxic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P., Wiesner, M.R.: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009)CrossRefGoogle Scholar
  2. 2.
    Future Markets: The Global Market for Zinc Oxide Nanoparticles. Future Markets, London (2014)Google Scholar
  3. 3.
    Nowack, B.: The occurrence, behavior, and effects of engineered nanomaterials in the environment. In: Kim, J. (ed.) Advances in Nanotechnology and the Environment, pp. 197–207. Pan Stanford, Singapore (2012)Google Scholar
  4. 4.
    Boxall, A.B..A., Chaudhry, Q., Sinclair, C., Jones, A.D., Aitken, R., Jefferson, B., Watts, C.: Current and Future Predicted Environmental Exposure to Engineered Nanoparticles. Central Science Laboratory, Sand Hutton (2007)Google Scholar
  5. 5.
    Gottschalk, F., Sun, T.Y., Nowack, B.: Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ. Pollut. 181, 287–300 (2013)CrossRefGoogle Scholar
  6. 6.
    Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B.: Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216–9222 (2009)CrossRefGoogle Scholar
  7. 7.
    Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B.: Possibility and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 29, 1036–1048 (2010)Google Scholar
  8. 8.
    Domingos, R.F., Baalousha, M.A., Yon, J.N., Reid, M.M., Tufenkji, N., Lead, J.R., Leppard, G.G., Wilkinson, K.J.: Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 43, 7277–7284 (2009)CrossRefGoogle Scholar
  9. 9.
    Tiede, K., Hassellöv, M., Breitbarth, E., Chaudhry, Q., Boxall, A.B..A.: Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J. Chromatogr. A 1216, 503–509 (2009)Google Scholar
  10. 10.
    Fairbairn, E.A., Keller, A.A., Mädler, L., Zhou, D., Pokhrel, S.: Metal oxide nanoparticles in seawater: linking physiochemical characteristics with biological response in sea urchin development. J. Hazard. Mater. 192, 1565–1571 (2011)CrossRefGoogle Scholar
  11. 11.
    Bian, S.W., Mudunkotuwa, I.A., Rupasinghe, T., Grassian, V.H.: Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27, 6059–6068 (2011)CrossRefGoogle Scholar
  12. 12.
    Tang, E., Cheng, G., Ma, X., Pang, X., Zhao, Q.: Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci. 252, 5227–5232 (2006)CrossRefGoogle Scholar
  13. 13.
    Lowry, G.V., Wiesner, M.R.: Environmental considerations: occurrences, fate, and characterization of nanoparticles in the environment. In: Monteiro-Riviere, N.A., Lang Tran, C. (eds.) Nanotoxicology: Characterization, Dosing and Health Effects, pp. 369–389. Informa Healthcare, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Yang, K., Lin, D., Xing, B.: Interactions of humic acid with nanosized inorganic oxides. Langmuir 25, 3571–3576 (2009)CrossRefGoogle Scholar
  15. 15.
    Wang, X., Lu, J., Xu, M., Xing, B.: Sorption of pyrene by regular and nanoscaled metal oxide particles: influence of adsorbed organic matter. Environ. Sci. Technol. 42, 7267–7272 (2008)CrossRefGoogle Scholar
  16. 16.
    Lipovsky, A., Tzitrinovich, Z., Friedmann, H., Applerot, G., Gedanken, A., Lubart, R.: EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C 113, 15997 (2009)CrossRefGoogle Scholar
  17. 17.
    Scown, T.M., van Aerle, R., Tyler, C.R.: Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit. Rev. Toxicol. 40(7), 653–670 (2010)CrossRefGoogle Scholar
  18. 18.
    Peng, X., Palma, S., Fisher, N.S., Wong, S.S.: Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. 102, 186–196 (2011)CrossRefGoogle Scholar
  19. 19.
    Miao, A.J., Zhang, X.Y., Luo, Z., Chen, C.S., Chin, W.C., Santschi, P.H., Quigg, A.: Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ. Toxicol. Chem. 29(12), 2814–2822 (2010)CrossRefGoogle Scholar
  20. 20.
    Wong, S.W.Y., Leung, P.T.Y., Djurišić, A.B.., Leung, K.M.Y.: Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bioanal. Chem. 396, 609–618 (2010)CrossRefGoogle Scholar
  21. 21.
    Manzo, S., Miglietta, M.L., Rametta, G., Buono, S., Di Francia, G.: Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci. Total Environ. 445–446, 371–376 (2013)CrossRefGoogle Scholar
  22. 22.
    Miller, R.J., Lenihan, H.S., Muller, E.B., Tseng, N., Hanna, S.K., Keller, A.A.: Impact of metal oxide nanoparticles on marine phytoplankton. Environ. Sci. Technol. 44(19), 7329–7334 (2010)CrossRefGoogle Scholar
  23. 23.
    Keller, A.A., Wang, H., Zhou, D., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R., Ji, Z.: Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44, 1962–1967 (2010)CrossRefGoogle Scholar
  24. 24.
    Trevisan, R., Delapedra, G., Mello, D.F., Arl, M., Schmidt, E.C., Meder, F., Monopoli, M., Cargnin-Ferreira, E., Bouzon, Z.L., Fisher, A.S., Sheehan, D., Dafre, A.: Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquat. Toxicol. 153, 27–38 (2014)CrossRefGoogle Scholar
  25. 25.
    Buffet, P.E., Amiard-Triquet, C., Dybowska, A., Faverney, C.R., Guibbolini, M., Valsami-Jones, E., Mouneyrac, C.: Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotoxicol. Environ. Saf. 84, 191–198 (2012)CrossRefGoogle Scholar
  26. 26.
    Montes, M.O., Hanna, S.K., Lenihan, H.S., Keller, A.A.: Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J. Hazard. Mater. 225–226, 139–145 (2012)CrossRefGoogle Scholar
  27. 27.
    Hanna, S.K., Miller, R.J., Muller, E.B., Nisbet, R.M., Lenihan, H.S.: Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis. PLoS One 8(4), e61800 (2013)CrossRefGoogle Scholar
  28. 28.
    Ates, M., Daniels, J., Arslan, Z., Farah, I.O., Rivera, H.F.: Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ. Sci. Process. Impacts. 15, 225–233 (2013)CrossRefGoogle Scholar
  29. 29.
    Jarvis, T.A., Miller, R.J., Lenihan, H.S., Bielmyer, G.K.: Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet. Environ. Toxicol. Chem. 32(6), 1264–1269 (2013)CrossRefGoogle Scholar
  30. 30.
    Fabrega, J., Tantra, R., Amer, A., Stolpe, B., Tomkins, J., Fry, T., Lead, J.R., Tyler, C., Galloway, T.S.: Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator. Environ. Sci. Technol. 46, 1128–1135 (2012)CrossRefGoogle Scholar
  31. 31.
    Larner, F., Dogra, Y., Dybowska, A., Fabrega, J., Stolpe, B., Bridgestock, L.J., Goodhead, R., Weiss, D.J., Moger, J., Lead, J.R., Valsami-Jones, E., Tyler, C.R., Galloway, T.S., Rehkämper, M.: Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. Environ. Sci. Technol. 46, 12137–12145 (2012)CrossRefGoogle Scholar
  32. 32.
    Handy, R.D., von der Kammer, F., Lead, J.R., Hassellöv, M., Owen, R., Crane, M.: The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287–314 (2008)CrossRefGoogle Scholar
  33. 33.
    Zhu, X., Wang, J., Zhang, X., Chang, Y., Chen, Y.: The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20, 195103 (2009)CrossRefGoogle Scholar
  34. 34.
    Xiong, D., Fang, T., Yu, L., Sima, X., Zhu, W.: Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ. 409, 1444–1452 (2011)CrossRefGoogle Scholar
  35. 35.
    Wong, S.W.Y., Leung, K.M.Y., Djurišić, A.B..: A comprehensive review on the aquatic toxicity of engineered nanomaterials. Rev. Nanosci. Nanotechnol. 2(2), 79–105 (2013)CrossRefGoogle Scholar
  36. 36.
    Ma, H., Williams, P.L., Diamond, S.A.: Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ. Pollut. 172, 76–85 (2013)CrossRefGoogle Scholar
  37. 37.
    Bodansky, M.: Biochemical studies on marine organisms: II. The occurrence of zinc. J. Biol. Chem. 44, 399–407 (1920)Google Scholar
  38. 38.
    Poynton, H.C., Lazorchak, J.M., Impellitteri, C.A., Smith, M.E., Rogers, K., Patra, M., Hammer, K.A., Allen, H.J., Vulpe, C.D.: Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ. Sci. Technol. 45, 762–768 (2011)CrossRefGoogle Scholar
  39. 39.
    Hoffmann, M., Hotze, E.M., Wiesner, M.R.: Reactive oxygen species generation on nanoparticulate material. In: Wiesner, M.R., Bottero, J.Y. (eds.) Environmental Nanotechnology: Applications and Impacts of Nanomaterials, pp. 155–171. McGraw-Hill, New York (2007)Google Scholar
  40. 40.
    Ma, H., Kabengi, N.J., Bertsch, P.M., Unrine, J.M., Glenn, T.C., Williams, P.L.: Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ. Pollut. 159(6), 1473–1480 (2011)CrossRefGoogle Scholar
  41. 41.
    Lee, W.M., An, Y.J.: Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91, 536–544 (2013)CrossRefGoogle Scholar
  42. 42.
    Cairns, J., Health, A.G., Parker, B.C.: The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia 47, 135–171 (1975)CrossRefGoogle Scholar
  43. 43.
    Wong, S.W.Y., Leung, K.M.Y.: Temperature-dependent toxicities of nano zinc oxide to marine diatom, amphipod and fish in relation to its aggregation size and ion dissolution. Nanotoxicology 8(51), 24–35 (2014)CrossRefGoogle Scholar
  44. 44.
    Nugegoda, D., Rainbow, P.S.: Salinity, osmolality, and zinc uptake in Palaemon elegans (Crustacea: Decapoda). Mar. Ecol. Prog. Ser. 55, 149–157 (1989)CrossRefGoogle Scholar
  45. 45.
    Park, J., Kim, S., Yoo, J., Lee, J.S., Park, J.W., Jung, J.: Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar. Pollut. Bull. (2014). doi:10.1016/j.marpolbul.2014.04.038Google Scholar
  46. 46.
    Leung, K.M.Y., Merrington, G., Warne, M.St.J., Wenning, R.J.: Scientific derivation of environmental quality benchmarks for the protection of aquatic ecosystems: challenges and opportunities. Environ. Sci. Pollut. Res. 21, 1–5 (2014)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Mana Man Na Yung
    • 1
  • Catherine Mouneyrac
    • 2
  • Kenneth Mei Yee Leung
    • 1
  1. 1.The Swire Institute of Marine Sciences and School of Biological SciencesThe University of Hong KongPokfulamChina
  2. 2.LUNAM Université, Université Catholique de l’OuestAngersFrance