Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Surface Engineering, Tailored Wettability, and Applications

  • Solomon Adera
  • Jiansheng Feng
  • Evelyn N. WangEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100967-1

Synonyms

Definition

Wettability is a fundamental property of solid surfaces, which plays a role in all aspects of our lives. It is characterized by the contact angle that a liquid droplet makes when deposited on a solid surface. The contact angle is the angle subtended by the liquid-vapor and the solid-liquid interface from the liquid side at the three-phase contact line where the three phases (solid, liquid, and vapor) meet. The Young contact angle is the angle that a droplet makes when it comes in contact with an atomically flat, chemically homogeneous, nonreactive, rigid, and insoluble surface (Fig. 1). This angle is typically referred to as the intrinsic or equilibrium or static contact angle ( θ) and can be obtained by balancing the interfacial forces at the three-phase contact line as given by the classical Young equation [ 1]

Keywords

Contact Angle Superhydrophobic Surface Critical Heat Flux Boiling Heat Transfer Apparent Contact Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  2. 2.
    Seemann, R., Brinkmann, M., Kramer, E.J., Lange, F.F., Lipowsky, R.: Wetting morphologies at microstructured surfaces. Proc. Natl. Acad. Sci. U. S. A. 102, 1848–1852 (2005)CrossRefGoogle Scholar
  3. 3.
    Huang, Y.-F., et al.: Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2, 770–774 (2007)CrossRefGoogle Scholar
  4. 4.
    Vakarelski, I.U., Patankar, N.A., Marston, J.O., Chan, D.Y., Thoroddsen, S.T.: Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012)CrossRefGoogle Scholar
  5. 5.
    Launay, S., Fedorov, A., Joshi, Y., Cao, A., Ajayan, P.: Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement. Microelectron. J. 37, 1158–1164 (2006)CrossRefGoogle Scholar
  6. 6.
    Quéré, D.: Wetting and roughness. Ann. Rev. Mater. Res. 38, 71–99 (2008)CrossRefGoogle Scholar
  7. 7.
    Xiao, R., Chu, K.-H., Wang, E.N.: Multilayer liquid spreading on superhydrophilic nanostructured surfaces. Appl. Phys. Lett. 94, 193104 (2009)CrossRefGoogle Scholar
  8. 8.
    Chu, K.-H., Xiao, R., Wang, E.N.: Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9, 413–417 (2010)CrossRefGoogle Scholar
  9. 9.
    Kandlikar, S.G.: A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transf. 123, 1071–1079 (2001)CrossRefGoogle Scholar
  10. 10.
    Leidenfrost, J.G.: On the fixation of water in diverse fire. Int. J. Heat Mass Transf. 9, 1153–1166 (1966)CrossRefGoogle Scholar
  11. 11.
    Chu, K.-H., Enright, R., Wang, E.N.: Structured surfaces for enhanced pool boiling heat transfer. Appl. Phys. Lett. 100, 241603 (2012)CrossRefGoogle Scholar
  12. 12.
    Chu, K.-H., Joung, Y.S., Enright, R., Buie, C.R., Wang, E.N.: Hierarchically structured surfaces for boiling critical heat flux enhancement. Appl. Phys. Lett. 102, 151602 (2013)CrossRefGoogle Scholar
  13. 13.
    Kutateladze, S., Gogonin, I.: Heat transfer in film condensation of slowly moving vapour. Int. J. Heat Mass Transf. 22, 1593–1599 (1979)CrossRefGoogle Scholar
  14. 14.
    Bonner, R.W.: 2010 14th International Heat Transfer Conference 221–226 (American Society of Mechanical Engineers)Google Scholar
  15. 15.
    Sikarwar, B.S., Khandekar, S., Agrawal, S., Kumar, S., Muralidhar, K.: Dropwise condensation studies on multiple scales. Heat Trans. Eng. 33, 301–341 (2012)CrossRefGoogle Scholar
  16. 16.
    Boreyko, J.B., Chen, C.-H.: Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009)CrossRefGoogle Scholar
  17. 17.
    Miljkovic, N., Wang, E.N.: Condensation heat transfer on superhydrophobic surfaces. MRS Bull. 38, 397–406 (2013)CrossRefGoogle Scholar
  18. 18.
    Enright, R., Miljkovic, N., Al-Obeidi, A., Thompson, C.V., Wang, E.N.: Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale. Langmuir 28, 14424–14432 (2012)CrossRefGoogle Scholar
  19. 19.
    Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936)CrossRefGoogle Scholar
  20. 20.
    Adera, S., Raj, R., Enright, R., Wang, E.N.: Non-wetting droplets on hot superhydrophilic surfaces. Nat. Commun. 4, 2518 (2013)CrossRefGoogle Scholar
  21. 21.
    Biance, A.-L., Clanet, C., Quere, D.: Leidenfrost drops. Phys. Fluids 15, 1632–1637 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Solomon Adera
    • 1
  • Jiansheng Feng
    • 1
  • Evelyn N. Wang
    • 1
    Email author
  1. 1.Device Research Laboratory, Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA