Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Microfluidic Optomechanics

  • Gaurav Bahl
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100963-1

Synonyms

Definition

Microfluidic optomechanical resonators (opto-mechano-fluidic resonators or OMFRs) enable coupling between light, solids, and fluids by means of optical forces and opto-acoustic scattering. This is achieved through solid–fluid hybrid modes that span vibrational frequencies in the MHz–GHz range. Using these interactions, microfluidic optomechanical devices can be used to perform acoustic rheological measurements on fluids using only light.

Principle of Operation

OMFRs are hollow silica microcapillary devices of diameter typically around 50–300 um, with diameter modulation along their length. These regions of larger diameter simultaneously host ultrahigh-Q optical resonant modes and high-Q acoustic resonant modes in the solid shell (see Fig. 1). Fluids infused into the hollow core of OMFRs do not directly interact with light in the shell (see optofluidics), provided the shell is made sufficiently thick. As a result, high optical Q can...

Keywords

Stimulate Brillouin Scattering Hybrid Mode Solid Shell Hollow Silica Pressure Actuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. 1.
    Bahl, G., Zehnpfennig, J., Tomes, M., Carmon, T.: Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nat. Commun. 2, 403 (2011)CrossRefGoogle Scholar
  2. 2.
    Kim, K.H., Bahl, G., Lee, W., Liu, J., Tomes, M., Fan, X., Carmon, T.: Cavity optomechanics on a microfluidic resonator with water and viscous liquids. Light Sci. Appl. 2, e110 (2013)CrossRefGoogle Scholar
  3. 3.
    Bahl, G., Kim, K.H., Lee, W., Liu, J., Fan, X., Carmon, T.: Brillouin cavity optomechanics with microfluidic devices. Nat. Commun. 4, 2994 (2013)CrossRefGoogle Scholar
  4. 4.
    Chiao, R.Y., Townes, C.H., Stoicheff, B.P.: Stimulated brillouin scattering and coherent generation of intense hypersonic waves. Physical Review Letters, 12(21), 592–595 (1964)Google Scholar
  5. 5.
    Han, K., Kim, K.H., Kim, J., Lee, W., Liu, J., Fan, X., Carmon, T., Bahl, G.: Fabrication and testing of microfluidic optomechanical oscillators. J. Vis. Exp. 87, e51497 (2014)Google Scholar
  6. 6.
    Lacey, S., White, I.M., Sun, Y., Shopova, S.I., Cupps, J.M., Zhang, P., Fan, X.: Versatile opto-fluidic ring resonator lasers with ultra-low threshold. Opt. Express 15(23), 15523–15530 (2007)CrossRefGoogle Scholar
  7. 7.
    Berneschi, S., Farnesi, D., Cosi, F., Conti, G.N., Pelli, S., Righini, G.C., Soria, S.: High Q silica microbubble resonators fabricated by arc discharge. Opt. Lett. 36(17), 3521–3523 (2011)CrossRefGoogle Scholar
  8. 8.
    Watkins, A., Ward, J., Wu, Y., Chormaic, S.N.: Single-input spherical microbubble resonator. Opt. Lett. 36(11), 2113–2115 (2011)CrossRefGoogle Scholar
  9. 9.
    Lee, W., Sun, Y., Li, H., Reddy, K., Sumetsky, M., Fan, X.: A quasi-droplet optofluidic ring resonator laser using a micro-bubble. Applied Physics Letters, vol. 99, p. 091102 (2011)Google Scholar
  10. 10.
    Arcizet, O., Riviere, R., Schliesser, A., Anetsberger, G., Kippenberg, T.J.: Cryogenic properties of optomechanical silica microcavities. Phys. Rev. A 80(2), 021803 (2009)CrossRefGoogle Scholar
  11. 11.
    Burg, T.P., Manalis, S.R.: Suspended microchannel resonators for biomolecular detection. Appl. Phys. Lett. 83(13), 2698 (2003)CrossRefGoogle Scholar
  12. 12.
    Burg, T.P., Godin, M., Knudsen, S.M., Shen, W., Carlson, G., Foster, J.S., Babcock, K., Manalis, S.R.: Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139), 1066–1069 (2007)CrossRefGoogle Scholar
  13. 13.
    Bahl, G., Kim, K.H., Lee, W., Liu, J., Tomes, M., Fan, X., Carmon, T.: Bridging two worlds: microfluidic optomechanics. Opt. Photonics News 24(12), 39 (2013)CrossRefGoogle Scholar
  14. 14.
    Han, K., Kim, J., Bahl, G.: Aerostatically tunable optomechanical oscillators. Opt. Express 22(2), 1267–1276 (2014)CrossRefGoogle Scholar
  15. 15.
    Han, K., Zhu, K., Bahl, G.: Opto-mechano-fluidic viscometer. Appl. Phys. Lett. 105(1), 014103 (2014)CrossRefGoogle Scholar
  16. 16.
    Kim, K.H., Fan, X.: Surface sensitive microfluidic optomechanical ring resonator sensors. Appl. Phys. Lett. 105(19), 191101 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA