Skip to main content

MEMS Resonant Infrared Sensors

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

MEMS resonant infrared detectors; MEMS resonant thermal detectors; MEMS resonant thermal sensors

Definition

A microelectromechanical system (MEMS) resonant infrared (IR) sensor is a particular class of thermal detectors that relies on a transduction scheme based on the change in vibration frequency of a microelectromechanical resonator with a temperature dependent mechanical resonance frequency. The incident IR radiation heats the MEMS resonator changing its resonance frequency. By monitoring such resonance frequency shift, the incident IR power is detected. Unlike other IR sensors, MEMS resonant IR sensors do not require cooling and are suitable for the implementation of high performance, miniaturized, and power efficient thermal imagers and spectrometers.

Principle of Operation

The core of a MEMS resonant IR detector is a microelectromechanical resonator whose resonance frequency is highly sensitive to temperature. An IR absorbing material is typically integrated on the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hui, Y., Rinaldi, M.: Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element. Appl. Phys. Lett. 102, 093501 (2013)

    Article  Google Scholar 

  2. Gokhale, V.J., Rais-Zadeh, M.: Uncooled infrared detectors using Gallium Nitride on silicon micromechanical resonators. J. Microelectromech. Syst. 23, 803–810 (2014)

    Article  Google Scholar 

  3. Pisani, M.B., Ren, K., Kao, P., Tadigadapa, S.: Application of micromachined-cut-quartz bulk acoustic wave resonator for infrared sensing. J. Microelectromech. Syst. 20, 288–296 (2011)

    Article  Google Scholar 

  4. Kuypers, J.H., Lin, C.-M., Vigevani, G., Pisano, A.P.: Intrinsic temperature compensation of aluminum nitride Lamb wave resonators for multiple-frequency references. In: Frequency Control Symposium, 2008 I.E. International Honolulu, Hawaii, USA, pp. 240–249 (2008)

    Google Scholar 

  5. Yi, F., Zhu, H., Reed, J.C., Cubukcu, E.: Plasmonically enhanced thermomechanical detection of infrared radiation. Nano Lett. 13, 1638–1643 (2013)

    Article  Google Scholar 

  6. Rogalski, A.: Infrared Detectors, 2nd edn. CRC Press, Boca Raton (2010)

    Google Scholar 

  7. Zhang, X., Myers, E., Sader, J., Roukes, M.: Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. Nano Lett. 13, 1528–1534 (2013)

    Article  Google Scholar 

  8. Hui, Y., Rinaldi, M.: High performance NEMS resonant infrared detector based on an aluminum nitride nano-plate resonator. In: Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Barcelona, Spain, pp. 968–971 (2013)

    Google Scholar 

  9. Hui, Z.Q.Y., Hummel, G., Rinaldi, M.: Pico-Watts range uncooled infrared detector based on a freestanding piezoelectric resonant microplate with nanoscale metal anchors. In: Proceedings of the 2014 Solid-State Sensors, Actuators and Microsystems Workshop (Hilton Head 2014), Hilton Head Island, pp. 387–390 (2014)

    Google Scholar 

  10. Wang, Z., Qiu, X., Chen, S.J., Pang, W., Zhang, H., Shi, J., et al.: ZnO based film bulk acoustic resonator as infrared sensor. Thin Solid Films 519, 6144–6147 (2011)

    Article  Google Scholar 

  11. Vig, J.R., Filler, R., Kim, Y.: Uncooled IR imaging array based on quartz microresonators. J. Microelectromech. Syst. 5, 131–137 (1996)

    Article  Google Scholar 

  12. Cabuz, C., Shoji, S., Fukatsu, K., Cabuz, E., Minami, K., Esashi, M.: Fabrication and packaging of a resonant infrared sensor integrated in silicon. Sensors Actuators A Phys. 43, 92–99 (1994)

    Article  Google Scholar 

  13. Hui, Y., Rinaldi, M.: Aluminum nitride nano-plate infrared sensor with self-sustained CMOS oscillator for nano-watts range power detection. In: European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 2013 Joint, Prague, Czech Republic, pp. 62–65 (2013)

    Google Scholar 

  14. Zaghloul, U., Piazza, G.: Synthesis and characterization of 10 nm thick piezoelectric AlN films with high c-axis orientation for miniaturized nanoelectromechanical devices. Appl. Phys. Lett. 104, 253101 (2014)

    Article  Google Scholar 

  15. Olsson, R.H., Wojciechowski, K.E., Baker, M.S., Tuck, M.R., Fleming, J.G.: Post-CMOS-compatible aluminum nitride resonant MEMS accelerometers. J. Microelectromech. Syst. 18, 671–678 (2009)

    Article  Google Scholar 

  16. Hui, Y., Nan, T., Sun, N.X., Rinaldi, M.: High resolution magnetometer based on a high frequency magnetoelectric MEMS-CMOS oscillator. J. Microelectromech. Syst. 24, 134–143 (2014)

    Article  Google Scholar 

  17. Allan, D.W.: Statistics of atomic frequency standards. Proceedings of the IEEE 54, 221–230 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Hui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Hui, Y., Rinaldi, M. (2016). MEMS Resonant Infrared Sensors. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100962-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100962-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics