Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

CMOS-MEMS Resonators

  • Sheng-Shian Li
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100960-1



Based upon a strict definition, a CMOS-MEMS resonator is fabricated using a CMOS foundry orientated process to realize MEMS/IC integration for resonator applications, such as oscillators and filters. The integrated CMOS-MEMS fabrication platform is a key technology to reduce the form factor, enhance the performance, increase the functionality, and facilitate circuit integration for portable sensing devices and Internet of Things (IoTs). The integrated CMOS-MEMS circuits greatly reduce the parasitic stray capacitances at the MEMS-circuit interface so that it not only improves the system responses at high frequencies but also reduces the power consumption of the electronic circuits. This platform benefits the future portable/wearable electronic products for smaller size and longer standby time.

Principle of Operation



Resonator Structure Squeeze Film Electromechanical Coupling Coefficient Beam Resonator Phase Noise Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Chen, W.-C., Fang, W., Li, S.-S.: A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits. J. Micromech. Microeng. 21(6), 065012 (2011)CrossRefGoogle Scholar
  2. 2.
    Li, C.-S., Hou, L.-J., Li, S.-S.: Advanced CMOS-MEMS resonator platform. IEEE Electron Device Lett. 33(2), 272–274 (2012)CrossRefGoogle Scholar
  3. 3.
    Liu, Y.-C., Tsai, M.-H., Chen, W.-C., Li, M.-H., Li, S.-S., Fang, W.: Temperature-compensated CMOS-MEMS oxide resonators. IEEE/ASME J. Microelectromech. Syst. 22(5), 1054–1065 (2013)CrossRefGoogle Scholar
  4. 4.
    Chen, W.-C., Li, M.-H., Liu, Y.-C., Fang, W., Li, S.-S.: A fully-differential CMOS-MEMS DETF oxide resonator with Q > 4,800 and positive TCF. IEEE Electron Device Lett. 33(5), 721–723 (2012)CrossRefGoogle Scholar
  5. 5.
    Li, C.-S., Li, M.-H., Chin, C.-H., Li, S.-S.: Differentially piezoresistive sensing for CMOS-MEMS resonators. IEEE/ASME J. Microelectromech. Syst. 22(6), 1361–1372 (2013)CrossRefGoogle Scholar
  6. 6.
    Melamud, R., Chandorkar, S.A., Kim, B., Lee, H.K., Salvia, J.C., Bahl, G., Hopcroft, M.A., Kenny, T.W.: Temperature-insensitive composite micromechanical resonators. IEEE/ASME J. Microelectromech. Syst. 18(6), 1409–1419 (2009)CrossRefGoogle Scholar
  7. 7.
    Fedder, G.K., Santhanam, S., Reed, M.L., Eagle, S.C., Guillou, D.F., Lu, M.S.-C., Carley, L.R.: Laminated high-aspect-ratio microstructures in a conventional CMOS process. Sensors Actuators A 57, 103–110 (1996)CrossRefGoogle Scholar
  8. 8.
    Lo, C.-C., Chen, F., Fedder, G.K.: Integrated HF CMOS-MEMS square-frame resonators with on-chip electronics and electrothermal narrow gap mechanism. In: Technical Digest, Transducers’05, pp. 2074–2077. Seoul (2005)Google Scholar
  9. 9.
    Uranga, A., Teva, J., Verd, J., Lopez, J.L., Torres, F., Esteve, J., Abadal, G., Perez-Murano, F., Barniol, N.: Fully CMOS integrated low voltage 100 MHz MEMS resonator. IEEE Electron. Lett. 41(24), 1327–1328 (2005)CrossRefGoogle Scholar
  10. 10.
    Verd, J., Uranga, A., Teva, J., Lopez, J.L., Torres, F., Esteve, J., Abadal, G., Perez-Murano, F., Barniol, N.: Integrated CMOS-MEMS with on chip read-out electronics for high frequency applications. IEEE Electron Device Lett. 27(6), 495–497 (2006)CrossRefGoogle Scholar
  11. 11.
    Teva, J., Abadal, G., Uranga, A., Verd, J., Torres, F., Lopez, J.L., Esteve, J., Pérez-Murano, F., Barniol, N.: From VHF to UHF CMOS-MEMS monolithically integrated resonators. In: Technical Digest, 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS’08), pp. 82–85. Tucson. (2008)Google Scholar
  12. 12.
    Pourkamali, S., Hao, Z., Ayazi, F.: VHF single crystal silicon elliptic bulk-mode capacitive disk resonators, part II: implementation and characterization. IEEE/ASME J. Microelectromech. Syst. 13(6), 1054–1062 (2004)CrossRefGoogle Scholar
  13. 13.
    Li, M.-H., Chen, W.-C., Li, S.-S.: Mechanically-coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 346–357 (2012)CrossRefGoogle Scholar
  14. 14.
    Chen, W.-C., Fang, W., Li, S.-S.: High-Q integrated CMOS-MEMS resonators with deep-submicron gaps and quasi-linear frequency tuning. IEEE/ASME J. Microelectromech. Syst. 21(3), 688–701 (2012)CrossRefGoogle Scholar
  15. 15.
    Chen, C.-Y., Li, M.-H., Li, C.-S., Li, S.-S.: Design and characterization of mechanically-coupled CMOS-MEMS filters for channel-select applications. Sensors Actuators A Phys. 216, 394–404 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of NanoEngineering and MicroSystemsNational Tsing Hua UniversityHsinchuTaiwan