Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Dissipative Particle Dynamics, Overview

  • Xuejin Li
  • Zhen Li
  • Xin Bian
  • Mingge Deng
  • Changho Kim
  • Yu-Hang Tang
  • Alireza Yazdani
  • George Em Karniadakis
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100954-1

Synonyms

Definition

Dissipative particle dynamics (DPD) is a stochastic mesoscopic simulation technique that describes clusters of molecules moving together in a Lagrangian fashion subject to simplified pairwise conservative, dissipative and random forces.

Introduction

Natural systems can be described at different scales based on both spatial and temporal size. In general, there are three different scales, i.e., micro-, meso-, and macroscales. A microscopic event occurs at nanometers in length and nanoseconds in time or, even less, governed by quantum mechanics or classical laws. Macroscale describes physical objects or phenomena that are measurable and visible directly with the naked eye, and thus, the mean free path of molecules is far smaller than the characteristic length of the geometry. A macroscopic event is usually described by continuum partial differential equations...

Keywords

Smooth Particle Hydrodynamic Smooth Particle Hydrodynamic Dissipative Particle Dynamic Amphiphilic Molecule Dissipative Particle Dynamic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. 1.
    Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992)CrossRefGoogle Scholar
  2. 2.
    Español, P., Warren, P.: Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191–196 (1995)CrossRefGoogle Scholar
  3. 3.
    Español, P.: Dissipative particle dynamics with energy conservation. Europhys. Lett. 40, 631–636 (1997)CrossRefGoogle Scholar
  4. 4.
    Español, P.: Fluid particle model. Phys. Rev. E 57, 2930–2948 (1998)CrossRefGoogle Scholar
  5. 5.
    Warren, P.B.: Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys. Rev. E 68, 066702 (2003)CrossRefGoogle Scholar
  6. 6.
    Español, P., Revenga, M.: Smoothed dissipative particle dynamics. Phys. Rev. E 67, 026705 (2003)CrossRefGoogle Scholar
  7. 7.
    Groot, R.D., Warren, P.B.: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997)CrossRefGoogle Scholar
  8. 8.
    Pivkin, I.V., Caswell, B., Karniadakis, G.E.: Dissipative particle dynamics. In: Lipkowitz, K.B. (ed.) Reviews in Computational Chemistry, pp. 85–110. Wiley, New Jersey (2010)CrossRefGoogle Scholar
  9. 9.
    Groot, R.D.: Applications of dissipative particle dynamics. Lect. Notes Phys. 640, 5–38 (2004)CrossRefGoogle Scholar
  10. 10.
    Lu, Z.-Y., Wang, Y.-M.: An introduction to dissipative particle dynamics. In: Monticelli, L., Salonen, E. (eds.) Biomolecular Simulations: Methods and Protocols, Methods in Molecular Biology, pp. 617–633. Springer, New York (2013)CrossRefGoogle Scholar
  11. 11.
    Kong, Y., Manke, C.W., Madden, W.G., Schlijper, A.G.: Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics. J. Chem. Phys. 107, 592–602 (1997)CrossRefGoogle Scholar
  12. 12.
    Fan, X.J., Phan-Thien, N., Ng, T.Y., Wu, X.H., Xu, D.: Microchannel flow of a macromolecular suspension. Phys. Fluids 15, 11–21 (2003)CrossRefGoogle Scholar
  13. 13.
    Fan, X.J., Phan-Thien, N., Chen, S., Wu, X.H., Ng, T.Y.: Simulating flow of DNA suspension using dissipative particle dynamics. Phys. Fluids 18, 063102 (2006)CrossRefGoogle Scholar
  14. 14.
    Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, London (1986)Google Scholar
  15. 15.
    Groot, R.D., Madden, T.J.: Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 108, 8713–8724 (1998)CrossRefGoogle Scholar
  16. 16.
    Yamamoto, S., Maruyama, Y., Hyodo, S.: Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. J. Chem. Phys. 116, 5842–5849 (2002)CrossRefGoogle Scholar
  17. 17.
    Huang, J.-H., Ma, Z.-X., Luo, M.-B.: Self-assembly of rod-coil diblock copolymers within a rod-selective slit: A dissipative particle dynamics simulation study. Langmuir 30, 6267–6273 (2014)CrossRefGoogle Scholar
  18. 18.
    Fedosov, D.A., Caswell, B., Karniadakis, G.E.: Dissipative particle dynamics modeling of red blood cells. In: Pozrikidis, C. (ed.) Computational Hydrodynamics of Capsules and Biological Cells, pp. 183–218. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  19. 19.
    Li, J., Dao, M., Lim, C.T., Suresh, S.: Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88, 3707–3719 (2005)CrossRefGoogle Scholar
  20. 20.
    Fedosov, D.A., Pivkin, I.V., Pan, W.X., Dao, M., Caswell, B., Karniadakis, G.E.: Multiscale modeling of hematologic disorders. In: Ambrosi, D., Quarteroni, A., Rozza, G. (eds.) Modelling of Physiological Flows, pp. 289–331. Springer, New York (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Xuejin Li
    • 1
  • Zhen Li
    • 1
  • Xin Bian
    • 1
  • Mingge Deng
    • 1
  • Changho Kim
    • 1
  • Yu-Hang Tang
    • 1
  • Alireza Yazdani
    • 1
  • George Em Karniadakis
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA