Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Electrochemical Interfaces for Energy Storage and Conversion

  • Clotilde S. Cucinotta
  • Monica Kosa
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100941-1



Under equilibrium conditions, a bulk electrolyte is an electroneutral, isotropic, and homogeneous solution, and there are no electric fields along any preferential direction. However, at the frontier with another material with mobile free charges (ions or electrons) and a different chemical potential – e.g., the electrode – some anisotropy in the forces experienced by the particles arises, and charge redistribution occurs. Although the interfacial region remains overall neutral, either side of the boundary becomes charged to an equal and opposite extent, forming the so-called electrical double layer or electrified interface. This gives rise to a potential difference across the interface. This potential...


Density Functional Theory Fuel Cell Solid Oxide Fuel Cell Normal Hydrogen Electrode Periodic Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford, UK (1989)Google Scholar
  2. 2.
    Mueller, J.E., Fantauzzi, D., Jacob, T.: Multiscale Modeling of Electrochemical Systems Jonathan – From Electrocatalysis: Theoretical Foundations and Model Experiments, 1st edn. In: Richard C. Alkire, Ludwig A. Kibler, Dieter M. Kolb, Jacek Lipkowski (eds.) Wiley-VCH Verlag GmbH & Co. KGaA (2013)Google Scholar
  3. 3.
    Axel Groß, A.: The virtual chemistry lab for reactions at surfaces: is it possible? Will it be useful? Surf. Sci. 500, 347–367 (2002)CrossRefGoogle Scholar
  4. 4.
    Keith, J.A., Anton, J., Kaghazchi, P., Jacob, T.: Modelling Catalytic Reactions on Surfaces with Density Functional Theory, pp. 1–38. Wiley-VCH, Verlag GmbH (2011)Google Scholar
  5. 5.
    Hammer, B., Nørskov, J.K.: Why gold is the noblest of all the metals. Nature 376, 238–240 (2002)CrossRefGoogle Scholar
  6. 6.
    Carrasco, J., Hodgson, A., Michaelides, A.: A molecular perspective of water at metal interfaces. Nat. Mater. 11, 667–674 (2012)CrossRefGoogle Scholar
  7. 7.
    Groß, A. Institut für Theoretische Chemie, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany: Theory of solid/electrolyte interfaces, Ψk Scientific highlight of the month, October 2014Google Scholar
  8. 8.
    Spohr, E.: Some recent trends in computer simulations of aqueous DLs. Electrochim. Acta 49, 23–27 (2003); Roman, T., Groß, A.: Structure of water layers on hydrogen-covered Pt electrodes. Catal. Today 202, 183–190 (2013)Google Scholar
  9. 9.
    Cheng, J., Sprik, M.: Alignment of electronic energy levels at electrochemical interfaces. Phys. Chem. Chem. Phys. 14, 11245–11267 (2012)CrossRefGoogle Scholar
  10. 10.
    Taylor, C.D., Wasileski, S.A., Filhol, J.S., Neurok, M.: First principles reaction modelling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys. Rev. B 73, 165402 (2006)CrossRefGoogle Scholar
  11. 11.
    Lozovoi, A.Y., Alavi, A., Kohanoff, J., Lynden-Bell, R.M.: Ab initio simulation of charged slabs at constant chemical potential. J. Chem. Phys. 115, 1661–1669 (2001)CrossRefGoogle Scholar
  12. 12.
    Rossmeisl, J., Greeley, J., Karlberg, G.: Electrocatalysis and catalyst screening from density functional theory calculations. In: Marc Koper (ed.) from Fuel Cell Catalysis: A Surface Science Approach. Andrzej Wieckowski, Wiley (2009), ISBN: 978-0-470-13116-9Google Scholar
  13. 13.
    Norskov, J.K., Rossmeisl, J., Logadottir, A., Lindqvist, L., Kitchin, J.R., Blingaard, T., Jònsson, H.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004)CrossRefGoogle Scholar
  14. 14.
    Otani, M., Sugino, O.: First-principles calculations of charged surfaces and interfaces: a plane-wave nonrepeated slab approach. Phys. Rev. B 73, 115407 (2006)CrossRefGoogle Scholar
  15. 15.
    Andreussi, O., Dabo, I., Marzari, N.: Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 136, 064102 (2012)CrossRefGoogle Scholar
  16. 16.
    http://batteryuniversity.com/learn/article/global_battery_marketsGoogle Scholar
  17. 17.
    Gasteiger, H.A., Markovic, N.M.: Just a dream – or future reality? Science 324, 48–49 (2009)CrossRefGoogle Scholar
  18. 18.
    Adler, S.B., Bessler, W.G.: Elementary kinetic modelling of SOFC electrode reactions. In: Viel-stich, W. (ed.) Handbook of Fuel Cells – Fundamentals, Technology and Applications, vol. 5. Wiley, New York (2009)Google Scholar
  19. 19.
    Tuckerman, M.E.: Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press, Oxford (2010)Google Scholar
  20. 20.
    Shishkin, M., Ziegler, T.: Direct modelling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview. Phys. Chem. Chem. Phys. 16, 1798–1808 (2014)CrossRefGoogle Scholar
  21. 21.
    Cucinotta, C.S., Bernasconi, M., Parrinello, M.: Hydrogen oxidation reaction at the Ni/YSZ anode of solid oxide fuel cells from first principles. Phys. Rev. Lett. 107, 206103(1–5) (2011)CrossRefGoogle Scholar
  22. 22.
    Lefevre, M., Proietti, E., Jaouen, F., Dedelet, J.-P.: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009)CrossRefGoogle Scholar
  23. 23.
    Zhao, Y., Truhlar, D.G.: Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008)CrossRefGoogle Scholar
  24. 24.
    Balaish, M., Kraytsberg, A., Ein-Eli, Y.: A critical review on lithium-air battery electrolytes. Phys. Chem. Chem. Phys. 16, 2801–2822 (2014)CrossRefGoogle Scholar
  25. 25.
    Peled, E.: The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems -The Solid Electrolyte Interphase Model, J. Electrochem. Soc. 126, 2047–2051 (1979)CrossRefGoogle Scholar
  26. 26.
    Laino, T., Curioni, A.: A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. Chem. Eur. J. 18, 3510–3520 (2012)CrossRefGoogle Scholar
  27. 27.
    Radin, M.D., Rodrigues, J.F., Tian, F., Siegel, D.J.: Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc. 134, 1093–1103 (2012)CrossRefGoogle Scholar
  28. 28.
    Dathar, G.K.P., Sheppard, D., Stevenson, K.J., Henkelman, G.: Calculations of Li-ion diffusion in olivine phosphates. Chem. Mater. 23, 4032–4037 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Physics, Trinity CollegeDublinIreland
  2. 2.Department of Chemistry, Faculty of Exact SciencesBar Ilan UniversityRamat GanIsrael