Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Nanomanipulation of Biocells

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100931-1



Nanomanipulation for biocells is the usage of precise manipulation techniques to tackle the fundamental and practical problems in biological cells at small scale, including, but not limited to, cell positioning, cell characterization, cell assembly, and so on.


Biological cell is the basic unit of life. This small organizational system maintains a highly complex and hierarchical architecture of interconnected molecular networks. The analysis on biological cell greatly benefits the basic research in life science and also clinical applications. Nanomanipulation enables to control the cell’s position precisely; thereby, it provides the possibility to study the cell’s properties at very small scale. Nowadays, nanomanipulation has been successfully used in cell positioning, cell characterization, cell assembly, and other biological cell analysis fields.

Key Techniques in Nanomanipulation



Environmental Scanning Electron Microscope Biological Cell Optical Tweezer Cell Position Piezo Actuator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Shen, Y., Ahmad, M.R., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: Evaluation of the single yeast cell’s adhesion to ITO substrates with various surface energies via ESEM nanorobotic manipulation system. IEEE Trans. NanoBiosci. 10, 217–224 (2011)CrossRefGoogle Scholar
  2. 2.
    Yi, C., Li, C.-W., Ji, S., Yang, M.: Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta 560, 1–23 (2006)CrossRefGoogle Scholar
  3. 3.
    Magdanz, V., Sanchez, S., Schmidt, O.G.: Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 25, 6581–6588 (2013)CrossRefGoogle Scholar
  4. 4.
    Zhang, L., Abbott, J.J., Dong, L., Peyer, K.E., Kratochvil, B.E., Zhang, H., et al.: Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9, 3663–3667 (2009)CrossRefGoogle Scholar
  5. 5.
    Yue, T., Nakajima, M., Tajima, H., Fukuda, T.: Fabrication of microstructures embedding controllable particles inside dielectrophoretic microfluidic devices. Int. J. Adv. Robot. Syst. 10, 1–9 (2013)Google Scholar
  6. 6.
    Chronis, N., Lee, L.P.: Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J. Microelectromech. Syst. 14, 857–863 (2005)CrossRefGoogle Scholar
  7. 7.
    Shen, Y., Nakajima, M., Ridzuan Ahmad, M., Kojima, S., Homma, M., Fukuda, T.: Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM. Ultramicroscopy 111, 1176–1183 (2011)CrossRefGoogle Scholar
  8. 8.
    Shen, Y., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: Study of the time effect on the strength of cell–cell adhesion force by a novel nano-picker. Biochem. Biophys. Res. Commun. 409, 160–165 (2011)CrossRefGoogle Scholar
  9. 9.
    Ahmad, M.R., Nakajima, M., Kojima, M., Kojima, S., Homma, M., Fukuda, T.: Instantaneous and quantitative single cells viability determination using dual nanoprobe inside ESEM. IEEE Trans. Nanotechnol. 11, 298–306 (2012)CrossRefGoogle Scholar
  10. 10.
    Ashkin, A., Dziedzic, J.: Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987)CrossRefGoogle Scholar
  11. 11.
    Chiou, P.Y., Ohta, A.T., Wu, M.C.: Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370–372 (2005)CrossRefGoogle Scholar
  12. 12.
    Chu, Y.S., Dufour, S., Thiery, J.P., Perez, E., Pincet, F.: Johnson-Kendall-Roberts theory applied to living cells. Phys. Rev. Lett. 94, 28102 (2005)CrossRefGoogle Scholar
  13. 13.
    Puech, P.-H., Poole, K., Knebel, D., Muller, D.J.: A new technical approach to quantify cell–cell adhesion forces by AFM. Ultramicroscopy 106, 637–644 (2006)CrossRefGoogle Scholar
  14. 14.
    Franz, C.M., Taubenberger, A., Puech, P.-H., Muller, D.J.: Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy. Sci. Signal. 2007, pl5-pl5 (2007)Google Scholar
  15. 15.
    Shen, Y., Nakajima, M., Kojima, S., Homma, M., Kojima, M., Fukuda, T.: Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter. Meas. Sci. Technol. 22, 115802 (2011)CrossRefGoogle Scholar
  16. 16.
    Vogler, H., Draeger, C., Weber, A., Felekis, D., Eichenberger, C., Routier-Kierzkowska, A.L., et al.: The pollen tube: a soft shell with a hard core. Plant J. 73, 617–627 (2013)CrossRefGoogle Scholar
  17. 17.
    Dao, M., Lim, C., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)CrossRefGoogle Scholar
  18. 18.
    Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T., Sambongi, T.: Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82, 253–258 (2000)CrossRefGoogle Scholar
  19. 19.
    Shen, Y., Nakajima, M., Yang, Z., Tajima, H., Najdovski, Z., Homma, M., et al.: Single cell stiffness measurement at various humidity conditions by nanomanipulation of a nano-needle. Nanotechnology 24, 145703 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhang, C., Li, P., Liu, L., Wang, Y., Gao, Z., Li, G.: Development of mechanostimulated patch-clamp system for cellular physiological study. IEEE/ASME Trans. Mechatron. 19, 1138–1147 (2014)CrossRefGoogle Scholar
  21. 21.
    Ahmad, M.R., Nakajima, M., Kojima, S., Homma, M., Fukuda, T.: In situ single cell mechanics characterization of yeast cells using nanoneedles inside environmental SEM. IEEE Trans. Nanotechnol. 7, 607–616 (2008)CrossRefGoogle Scholar
  22. 22.
    Klein, F., Richter, B., Striebel, T., Franz, C.M., Freymann, G.V., Wegener, M., et al.: Two-component polymer scaffolds for controlled three-dimensional cell sulture. Adv. Mater. 23, 1341–1345 (2011)CrossRefGoogle Scholar
  23. 23.
    Liu, N., Liang, W., Liu, L., Wang, Y., Mai, J.D., Lee, G.-B., et al.: Extracellular-controlled breast cancer cell formation and growth using non-UV patterned hydrogels via optically-induced electrokinetics. Lab Chip 14, 1367–1376 (2014)CrossRefGoogle Scholar
  24. 24.
    Tasoglu, S., Diller, E., Guven, S., Sitti, M., Demirci, U.: Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 5, 3124 (2014)Google Scholar

Authors and Affiliations

  1. 1.Department of Mechanical and Biomedical Engineering, College of Science and EngineeringCity University of Hong KongKowloon, Hong KongChina
  2. 2.School of Mechatronic EngineeringBeijing Institute of TechnologyBeijingChina