Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Dielectrophoresis Directed Nanocolloidal and Supramolecular Assembly

  • Shengqin Wang
  • Yingxi Zhu
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100913-1



Dielectrophoresis (DEP)-directed assembly is an electrokinetic manipulation process, in which a force exerted on a particle subjected to a nonuniform electric field is employed to localize the particle in space with micro- or nanoscale precision. DEP force originated from the interparticle interaction due to the induced dipoles on the particles subject to the spatial gradient of the electric field. DEP is applicable for any particles, charged or uncharged, which makes it advantageous over electrophoresis that requires a net charge on the particle for Coulombic interaction to drive the particle in an applied electric field.


DEP was first adopted as a term to describe the motion of particles under nonuniform electric fields in the 1950s by Pohl, who defined this effect as “the motion of suspended particles relative to that of the solvent resulting from polarization forces produced by an...


Fluorescence Correlation Spectroscopy Crossover Frequency Nonuniform Electric Field P2VP Chain Synthetic Polyelectrolyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Pohl, H.A.: The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 869–871 (1951)CrossRefGoogle Scholar
  2. 2.
    Pohl, H.A.: Some effects of nonuniform fields on dielectrics. J. Appl. Phys. 29, 1182–1188 (1958)CrossRefGoogle Scholar
  3. 3.
    Pohl, H.A., Hawk, I.: Separation of living and dead cells by dielectrophoresis. Science 152, 647–649 (1966)CrossRefGoogle Scholar
  4. 4.
    Pohl, H.A.: Dielectrophoresis. Cambridge University Press, Cambridge (1978)Google Scholar
  5. 5.
    Morgan, H., Green, N.G.: AC Electrokinetics: colloids and nanoparticles. Research Studies Press, Baldock/Hertfordshire/England (2002)Google Scholar
  6. 6.
    Washizu, M., Kurosawa, O.: Electrostatic manipulation of DNA in microfabricated structure. IEEE Ind. Appl. Trans. 26, 1165–1172 (1990)CrossRefGoogle Scholar
  7. 7.
    Washizu, M., Suzuki, S., Kurosawa, O., Nishizaka, T., Shinohara, T.: Molecular dielectrophoresis of biopolymer. IEEE Ind. Appl. Trans. 30, 835–843 (1994)CrossRefGoogle Scholar
  8. 8.
    Chang, H.-C., Yeo, L.Y.: Electrokinetically-driven microfluidics and nanofluidics. Cambridge University Press, New York (2009)Google Scholar
  9. 9.
    Zhang, C., Khoshmanesh, K., Mitchell, A., Kalantar-zadeh, K.: Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal. Bioanal. Chem. 396, 401–420 (2010)CrossRefGoogle Scholar
  10. 10.
    Hoffman, P.D., Zhu, Y.X.: Double-layer effects on low-frequency dielectrophoresis-induced colloidal assembly. Appl. Phys. Lett. 92, 224103 (2008)CrossRefGoogle Scholar
  11. 11.
    Akin, D., Li, H., Bashir, R.: Real-time virus trapping and fluorescent imaging in microfluidic devices. Nano Lett. 4, 257–259 (2003)CrossRefGoogle Scholar
  12. 12.
    Grom, F., Kentsch, J., Müller, T., Schnelle, T., Stelzle, M.: Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 27, 1386–1393 (2006)CrossRefGoogle Scholar
  13. 13.
    Hoffman, P.D., Sarangapani, P.S., Zhu, Y.: Dielectrophoresis and AC-induced assembly in binary colloidal suspensions. Langmuir 24, 12164–12171 (2008)CrossRefGoogle Scholar
  14. 14.
    Shekhar, S., Stokes, P., Khondaker, S.I.: Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis. ACS Nano 5, 1739–1746 (2011)CrossRefGoogle Scholar
  15. 15.
    Pethig, R.: Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4, 022811 (2010)CrossRefGoogle Scholar
  16. 16.
    Nocke, A., Wolf, M., Budzier, H., Arndt, K.-F., Gerlach, G.: Dielectrophoretic alignment of polymer compounds for thermal sensing. Sens. Actuators A 156, 164–170 (2009)CrossRefGoogle Scholar
  17. 17.
    Daeha, J., Chunder, A., Lei, Z., Saiful, I.K.: High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis. Nanotechnology 21, 165202 (2010)CrossRefGoogle Scholar
  18. 18.
    Li, X., Chin, E., Sun, H., Kurup, P., Gu, Z.: Fabrication and integration of metal oxide nanowire sensors using dielectrophoretic assembly and improved post-assembly processing. Sens. Actuators B 148, 404–412 (2010)CrossRefGoogle Scholar
  19. 19.
    Freer, E.M., Grachev, O., Duan, X., Martin, S., Stumbo, D.P.: High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Nanotechnol. 5, 525–530 (2010)CrossRefGoogle Scholar
  20. 20.
    Raychaudhuri, S., Dayeh, S.A., Wang, D., Yu, E.T.: Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett. 9, 2260–2266 (2009)CrossRefGoogle Scholar
  21. 21.
    Barsotti, R.J., Vahey, M.D., Wartena, R., Chiang, Y.M., Voldman, J., Stellacci, F.: Assembly of metal nanoparticles into nanogaps. Small 3, 488–499 (2007)CrossRefGoogle Scholar
  22. 22.
    Gierhart, B.C., Howitt, D.G., Chen, S.J., Smith, R.L., Collins, S.D.: Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir 23, 12450–12456 (2007)CrossRefGoogle Scholar
  23. 23.
    Krupke, R., Hennrich, F., von Lohneysen, H., Kappes, M.M.: Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Science 301, 344–347 (2003)CrossRefGoogle Scholar
  24. 24.
    Castellanos, A., Ramos, A., Gonzalez, A., Green, N.G., Morgan, H.: Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D-Appl. Phys. 36, 2584–2597 (2003)CrossRefGoogle Scholar
  25. 25.
    Irimajiri, A., Hanai, T., Inouye, A.: A dielectric theory of “multi-stratified shell” model with its application to a lymphoma cell. J. Theor. Biol. 78, 251–269 (1979)CrossRefGoogle Scholar
  26. 26.
    Green, N.G., Jones, T.B.: Numerical determination of the effective moments of non-spherical particles. J. Phys. D-Appl. Phys. 40, 78–85 (2007)CrossRefGoogle Scholar
  27. 27.
    Winter, W.T., Welland, M.E.: Dielectrophoresis of non-spherical particles. J. Phys. D-Appl. Phys. 42, 045501 (2009)CrossRefGoogle Scholar
  28. 28.
    Yang, C.Y., Lei, U.: Dielectrophoretic force and torque on an ellipsoid in an arbitrary time varying electric field. Appl. Phys. Lett. 90, 153901 (2007)CrossRefGoogle Scholar
  29. 29.
    Basuray, S., Chang, H.C.: Induced dipoles and dielectrophoresis of nanocolloids in electrolytes. Phys. Rev. E 75, 060501 (2007)CrossRefGoogle Scholar
  30. 30.
    Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W., Velev, O.D.: Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001)CrossRefGoogle Scholar
  31. 31.
    Kumar, S., Seo, Y.K., Kim, G.H.: Manipulation and trapping of semiconducting ZnO nanoparticles into nanogap electrodes by dielectrophoresis technique. Appl. Phys. Lett. 94, 153104 (2009)CrossRefGoogle Scholar
  32. 32.
    Zheng, L.F., Li, S.D., Brody, J.P., Burke, P.J.: Manipulating nanoparticles in solution with electrically contacted nanotubes using dielectrophoresis. Langmuir 20, 8612–8619 (2004)CrossRefGoogle Scholar
  33. 33.
    Gagnon, Z., Chang, H.C.: Aligning fast alternating current electroosmotic flow fields and characteristic frequencies with dielectrophoretic traps to achieve rapid bacteria detection. Electrophoresis 26, 3725–3737 (2005)CrossRefGoogle Scholar
  34. 34.
    Elson, E.L., Magde, D.: Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27 (1974)CrossRefGoogle Scholar
  35. 35.
    Froude, V.E., Godfroy, J.I., Wang, S.Q., Dombek, H., Zhu, Y.X.: Anomalous dielectrophoresis of nanoparticles: A sensitive and rapid characterization by single-particle laser spectroscopy. J. Phys. Chem. C 114, 18880–18885 (2010)CrossRefGoogle Scholar
  36. 36.
    Zhang, L., Zhu, Y.X.: Dielectrophoresis of Janus particles under high frequency AC-electric fields. Appl. Phys. Lett. 96, 141902 (2010)CrossRefGoogle Scholar
  37. 37.
    Zhang, L., Zhu, Y.X.: Directed assembly of janus particles under high frequency ac-electric fields: effects of medium conductivity and colloidal surface chemistry. Langmuir 28, 13201–13207 (2012)CrossRefGoogle Scholar
  38. 38.
    Felnerova, D., Viret, J.F., Gluck, R., Moser, C.: Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol. 15, 518–529 (2004)CrossRefGoogle Scholar
  39. 39.
    Fronde, V.E., Zhu, Y.X.: Dielectrophoresis of lipid unilamellar vesicles (liposomes) of contrasting surface constructs. J. Phys. Chem. B 113, 1552–1558 (2009)CrossRefGoogle Scholar
  40. 40.
    Goodrich, V.E., Connor, E., Wang, S.Q., Yang, J.F., Zhao, J., Zhu, Y.X.: AC-electrokinetic manipulation and controlled encapsulate release of surfactant based micelles. Soft Matter 9, 5052–5060 (2013)CrossRefGoogle Scholar
  41. 41.
    Wang, S., Zhu, Y.: Manipulating single annealed polyelectrolyte chain under ac-electric fields: collapse versus accumulation. Biomicrofluidics 6, 024116 (2012)CrossRefGoogle Scholar
  42. 42.
    Wang, S.Q., Chang, H.C., Zhu, Y.X.: Hysteretic conformational transition of single flexible polyelectrolyte under resonance ac-electric polarization. Macromolecules 43, 7402–7405 (2010)CrossRefGoogle Scholar
  43. 43.
    Henning, A., Bier, F.F., Holzel, R.: Dielectrophoresis of DNA: Quantification by impedance measurements. Biomicrofluidics 4, 022803 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research)SingaporeSingapore
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameUSA