Encyclopedia of Nanotechnology

Living Edition
| Editors: Bharat Bhushan

Implementing Alternating Nanolaminates in Trenched Energy Storage Systems

  • Sylvia W. Thomas
  • Jing Wang
  • Paula A. Algarin
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6178-0_100911-1



The National Academy of Engineering, in its Grand Challenge on “making solar energy economical,” places emphasis on this statement, “However advanced solar cells become at generating electricity cheaply and efficiently, a major barrier to widespread use of the sun’s energy remains: the need for storage” [1].

For energy storage devices, such as the battery and the supercapacitor, the most common problems are shelf/cycle life, lower efficiency, and high leakage current [2, 3]. These are tremendous challenges for an integrated circuit (IC) industry seeking greater IC functionality, smaller component size, and low power consumption using standard supercapacitors, ultracapacitors, or electrochemical capacitors for on-chip energy storage. In addition, the continuous need to reduce the component size of IC elements has not only begun to challenge the capabilities of...


Aluminum Anodic Oxide Atomic Layer Deposition Energy Storage System Aluminum Anodic Oxide Template Atomic Layer Deposition Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    National Academy of Engineering, Grand Challenges for Engineering, www.engineeringchallenges.org
  2. 2.
    Halper, M., Ellenbogen, J.: Supercapacitors: A Brief Overview. MITRE Nanosystems Group, McLean, VA (2006)Google Scholar
  3. 3.
    Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer-Plenum, New York (1999)CrossRefGoogle Scholar
  4. 4.
    Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S.B., Rubloff, G.W.: Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat. Nanotechnol. 4, 292–296 (2009)CrossRefGoogle Scholar
  5. 5.
    Huang, C., Cheng, C.-H., Lee, K.-T., Liou, B.-H.: High-performance metal-insulator-metal capacitor using quality properties of high- TiPrO dielectric. J. Electrochem. Soc. 156(4), G23–G27 (2009)CrossRefGoogle Scholar
  6. 6.
    Jeon, W., Chung, H.S., Joo, D., Kang, S.W.: TiO2/Al2O3/TiO2 Nanolaminated thin films for DRAM capacitor deposited by plasma-enhanced atomic layer deposition. Electrochem. Solid-State Lett. 11, H19–H21 (2008)CrossRefGoogle Scholar
  7. 7.
    Gerritsen, E., et al.: Evolution of materials technology for stacked-capacitors in 65 nm embedded-DRAM. Solid-State Electron. 49, 1767–1775 (2005)CrossRefGoogle Scholar
  8. 8.
    Kemell, M., et al.: Si/Al2O3/ZnO: Al capacitor arrays formed in electrochemically etched porous Si by atomic layer deposition. Microelectron. Eng. 84, 313–318 (2007)CrossRefGoogle Scholar
  9. 9.
    Shi, L., Yin, J., Yin, K.B., Gao, F., Xia, Y.D., Liu, Z.G.: An investigation into ultra-thin pseudobinary oxide (TiO2)x(Al2O3)1−x films as high-k gate dielectrics. Appl. Phys. A Mater. Sci. Process. 90, 379–384 (2007)CrossRefGoogle Scholar
  10. 10.
    Jinesh, K.B., Lamy, Y., Klootwijk, J.H., Besling, W.: Maxwell-Wagner instability in bilayer dielectric stacks. Appl. Phys. Lett., 95, 122903 (2009), AIP Publishing LLC. doi:10.1063/1.3236532Google Scholar
  11. 11.
    Wei, L., et al.: Giant dielectric constant dominated by Maxwell–Wagner relaxation in Al2O3/TiO2 nanolaminates synthesized by atomic layer deposition. Appl. Phys. Lett. 96, 162907 (2010)CrossRefGoogle Scholar
  12. 12.
    Auciello, O.H., Lai, B-K., Lee, G., Katiyar, R.S.: Nanolaminates of Al2O3/TiO2 with Giant dielectric constant low leakage – low loss: extended frequency operation for new-generation nanoelectronics and energy storage devices. Uchicago Argonne LLC., USPTO US 20130264680 A1 (2013)Google Scholar
  13. 13.
    Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)CrossRefGoogle Scholar
  14. 14.
    Sohn, J., et al.: Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes. Appl. Phys. Lett. 87, 123115 (2005)CrossRefGoogle Scholar
  15. 15.
    George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010)CrossRefGoogle Scholar
  16. 16.
    Ritala, M., Leskelä, M.: Atomic layer deposition. In: Handbook of Thin Film Materials edited by H.S. Nalwa, Academic Press, San Diego, 1(2), p. 103 (2002)Google Scholar
  17. 17.
    Ladanov, M., Algarin-Amaris, P., Matthews, G., Ram, M., Thomas, S., Kumar, A., Wang, J.: Microfluidic hydrothermal growth of ZnO nanowires over high aspect ratio microstructures. Nanotechnology 24(37) p. 1–9 (2013)Google Scholar
  18. 18.
    Ladanov, M., Algarin Amaris, P., Villalba, P., Emirov, Y., Matthews, G., Ram, M.K., Thomas, S., Wang, J., Kumar, A.: Effects of the physical properties of atomic layer deposition grown seeding layers on the preparation of ZnO nanowires. J. Phy. Chem. Solids, Ms. Ref. No.: PCS-D-13-00179R1 74, 1578-1588 (2013)Google Scholar
  19. 19.
    Xing, Q.F., Sasaki, G., Fukunaga, H.: Interfacial microstructure of anodic bonded Al/glass. J. Mater. Sci. Mater. Electron. 13, 83–88 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sylvia W. Thomas
    • 1
  • Jing Wang
    • 1
  • Paula A. Algarin
    • 1
  1. 1.Department of Electrical EngineeringUniversity of South FloridaTampaUSA