Advertisement

Molecular Mechanics: Principles, History, and Current Status

  • Valeri Poltev
Living reference work entry

Abstract

A short survey of the general principles and selected applications of molecular mechanics (MM) is presented. The origin of molecular mechanics and its evolution is followed starting from “pre-computer” and the first computer-aided estimations of the structure and potential energy of simple molecular systems to the modern force fields and software for the computations of large biomolecules and their complexes. Analysis of the current state of physicochemical study of biological processes suggests that MM simulations based on empirical force fields have an ever-increasing impact on understanding the structure and functions of biomolecules. The problem of “classic mechanics” description of essentially quantum properties and processes is considered. Various approaches to a selection of force field mathematical expressions and parameters are reviewed. The relation between MM simplicity and “physical nature” of the properties and events is examined. Quantum chemistry contributions to MM description of complex molecular systems and MM contribution to quantum mechanics computations of such systems are considered.

Keywords

Force Field Atom Type Molecular Crystal Valence Angle Peptide Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. Allinger, N. L. (1959). Conformational analysis. III. Applications to some medium ring compounds. Journal of the American Chemical Society, 81, 5727.CrossRefGoogle Scholar
  2. Allinger, N. L. (2010). Molecular structure: Understanding steric and electronic effects from molecular mechanics. Hoboken: Willey.CrossRefGoogle Scholar
  3. Allinger, N. L. (2011). Understanding molecular structure from molecular mechanics. Journal of Computer-Aided Molecular Design, 25, 295.CrossRefGoogle Scholar
  4. Allinger, N. L., & Sprague, J. T. (1973). Calculation of the structures of hydrocarbons containing delocalized electronic systems by the molecular mechanics method. Journal of the American Chemical Society, 95, 3893.CrossRefGoogle Scholar
  5. Allinger, N. L., Tribble, M. T., Miller, M. A., & Wertz, D. W. (1971). Conformational analysis. LXIX. Improved force field for the calculation of the structures and energies of hydrocarbons. Journal of the American Chemical Society, 93, 1637.CrossRefGoogle Scholar
  6. Allinger, N. L., Yuh, Y. H., & Lii, J. H. (1989). Molecular mechanics. The MM3 force field for hydrocarbons. Journal of the American Chemical Society, 111, 8551.CrossRefGoogle Scholar
  7. Allinger, N. L., Chen, K., & Lii, J. H. (1996). An improved force field (MM4) for saturated hydrocarbons. Journal of Computational Chemistry, 17, 642.CrossRefGoogle Scholar
  8. Antony, J., & Grimme, S. (2006). Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Physical Chemistry Chemical Physics, 8, 5287.CrossRefGoogle Scholar
  9. Arnautova, Y. A., & Scheraga, H. A. (2008). Use of decoys to optimize an all-atom force field including hydration. Biophysical Journal, 95, 2434.CrossRefGoogle Scholar
  10. Arnautova, Y. A., Jagielska, A., & Scheraga, H. A. (2006). A new force field (ECEPP-05) for peptides, proteins and organic molecules. The Journal of Chemical Physics, 110, 5025.CrossRefGoogle Scholar
  11. Baker, C. M., Anisimov, V. M., & MacKerell, A. D., Jr. (2011). Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. The Journal of Physical Chemistry B, 115, 580.CrossRefGoogle Scholar
  12. Bartell, L. S. (1960). On the effects of intramolecular van der Waals forces. The Journal of Chemical Physics, 32, 827.CrossRefGoogle Scholar
  13. Barton, D. H. R. (1948). Interaction between non-bonded atoms, and the structure of cis-decalin. Journal of the Chemical Society, 340.Google Scholar
  14. Barton, D. H. R. (1950). The conformation of the steroid nucleus. Experientia, 6, 316.CrossRefGoogle Scholar
  15. Berendsen, H. J. C., Postma, J. P. M., von Gunstaren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: Reidel.CrossRefGoogle Scholar
  16. Berman, H. M., Olson, W. K., Beveridge, D. l., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S.-H., Srinivasan, A. R., & Schneider, B. (1992). The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophysical Journal, 63, 751.CrossRefGoogle Scholar
  17. Berman, H. M., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein data bank. Nature Structural & Molecular Biology, 10, 980.CrossRefGoogle Scholar
  18. Bernal, J. D., & Fowler, R. H. (1933). A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. The Journal of Chemical Physics, 1, 515.CrossRefGoogle Scholar
  19. Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D., Jr. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. Journal of Chemical Theory and Computation, 8, 3257.CrossRefGoogle Scholar
  20. Bordner, A. J., Cavasotto, C. N., & Abagyan, R. A. (2003). Direct derivation of van der Waals force field parameters from quantum mechanical interaction energies. The Journal of Physical Chemistry B, 107, 9601.CrossRefGoogle Scholar
  21. Bradley, D. F., Lifson, S., & Honig, B. (1964). Theory of optical and other properties of biopolymers: Applicability and elimination of the first-neighbor and dipole-dipole approximations. In B. Pullman (Ed.), Electronic aspects of biochemistry. New York: Academic.Google Scholar
  22. Brandenburg, J. G., & Grimme, S. (2014). Accurate modeling of organic molecular crystals by dispersion-corrected density functional tight binding (DFTB). The Journal of Physical Chemistry Letters, 5, 1785.CrossRefGoogle Scholar
  23. Brant, D. A., & Flory, P. J. (1965). The configuration of random polypeptide chains. II. Theory. Journal of the American Chemical Society, 87, 2791.CrossRefGoogle Scholar
  24. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4, 187.CrossRefGoogle Scholar
  25. Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computation Chemistry, 26, 1668.CrossRefGoogle Scholar
  26. Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D. R., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., & Kollman, P. A. (2010). AMBER 11. San Francisco: University of California.Google Scholar
  27. Case, D. A., Berryman, J. T., Betz, R. M., Cerutti, D. S., Cheatham, T. E., III, Darden, T., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Luchko, T., Luo, R., Madej, B., Merz, K. M., Monard, G., Needham, P., Nguyen, H., Nguyen, H. T., Omelyan, I., Onufriev, A., Roe, D. R., Roitberg, A., Salomon-Ferrer, R., Simmerling, C. L., Smith, W., Swails, J., Walker, R. C., Wang, J., Wolf, R. M., Wu, X., York, D. M., & Kollman, P. A. (2015). AMBER 2015. San Francisco: University of California.Google Scholar
  28. Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Krautler, V., Oostenbrink, C., Peter, C., Trzesniak, D., & Van Gunsteren, W. F. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26, 1719.CrossRefGoogle Scholar
  29. Chuprina, V. P., & Poltev, V. I. (1983). Possible conformations of double-helical polynucleotides containing incorrect base-pairs. Nucleic Acids Research, 11, 5205.CrossRefGoogle Scholar
  30. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I., Merz, K., Jr., Ferguson, D., Spellmeyer, D., Fox, T., Caldwell, J., & Kollman, P. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179.CrossRefGoogle Scholar
  31. Craig, D. P., Mason, R., Pauling, P., & Santry, D. P. (1965). Molecular packing in crystals of the aromatic hydrocarbons. Proceedings of the Royal Society A, 286, 98.CrossRefGoogle Scholar
  32. Cramer, C. J. (2004). Essentials of computational chemistry: Theories and models. Chichester: Wiley.Google Scholar
  33. De Santis, P. (1992). Conformational energy calculations of macromolecules. Current Contents, 34, 8.Google Scholar
  34. De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1963). Stability of helical conformations of simple linear polymers. Journal of Polymer Science: Part A, 1, 1383.Google Scholar
  35. De Santis, P., Giglio, E., Liquori, A. M., & Ripamonti, A. (1965). Interaction and stability of helical polypeptide chains. Nature, 206, 456.CrossRefGoogle Scholar
  36. De Voe, H., & Tinoco, I., Jr. (1962). The stability of helical polynucleotides: Base contributions. Journal of Molecular Biology, 4, 500.CrossRefGoogle Scholar
  37. Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24, 1999.CrossRefGoogle Scholar
  38. Eisenberg, D. (2003). The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proceedings of the National Academy of Sciences of the United States of America, 100, 11207.CrossRefGoogle Scholar
  39. Engler, E. M., Andose, J. D., & Schleyer, P. R. (1973). Critical evaluation of molecular mechanics. Journal of the American Chemical Society, 95, 8005.CrossRefGoogle Scholar
  40. Foloppe, N., & MacKerell, A. D., Jr. (2000). All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21, 86.CrossRefGoogle Scholar
  41. Gibson, K. D., & Scheraga, H. A. (1967a). Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proceedings of the National Academy of Sciences of the United States of America, 58, 420.CrossRefGoogle Scholar
  42. Gibson, K. D., & Scheraga, H. A. (1967b). Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 58, 1317.CrossRefGoogle Scholar
  43. Golas, E., Maisuradze, G. G., Senet, P., Oldziej, S., Czaplewski, C., Scheraga, H. A., & Liwo, A. (2012). Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. Journal of Chemical Theory and Computation, 8, 1750.CrossRefGoogle Scholar
  44. Gresh, N., Claverie, P., & Pullman, A. (1986). Intermolecular interactions: Elaboration on an additive procedure including an explicit charge-transfer contribution. International Journal of Quantum Chemistry, 29, 101.CrossRefGoogle Scholar
  45. Grimme, S. (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25, 1463.CrossRefGoogle Scholar
  46. Grimme, S. (2011). Density functional theory with London dispersion corrections. WIREs Computational Molecular Science, 1, 211.CrossRefGoogle Scholar
  47. Grubišić, S., Brancato, G., & Barone, V. (2013). An improved AMBER force field for α, α-dialkylated peptides: Intrinsic and solvent-induced conformational preferences of model systems. Physical Chemistry Chemical Physics, 15, 17395.CrossRefGoogle Scholar
  48. Guo, X., Wang, Z., Zuo, L., Zhou, Z., Guo, X., & Sun, T. (2014). Quantitative prediction of enantioseparation using b-cyclodextrin derivatives as chiral selectors in capillary electrophoresis. Analyst, 139, 6511.CrossRefGoogle Scholar
  49. Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17, 490.CrossRefGoogle Scholar
  50. Halgren, T. A. (1999a). MMFF VI. MMFF94s option for energy minimization studies. Journal of Computational Chemistry, 20, 720.CrossRefGoogle Scholar
  51. Halgren, T. A. (1999b). MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. Journal of Computational Chemistry, 20, 730.CrossRefGoogle Scholar
  52. Hart, K., Foloppe, N., Baker, C. M., Denning, E. J., Nilsson, L., & MacKerell, A. D., Jr. (2012). Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. Journal of Chemical Theory and Computation, 8, 348.CrossRefGoogle Scholar
  53. He, Y., Maciejczyk, M., Oldziej, S., Scheraga, H. A., & Liwo, A. (2013). Mean-field interactions between nucleic-acid-base dipoles can drive the formation of the double helix. Physical Review Letters, 110, 098101.CrossRefGoogle Scholar
  54. Hendrickson, J. B. (1961). Molecular geometry. I. Machine computation of the common rings. Journal of the American Chemical Society, 83, 4537.CrossRefGoogle Scholar
  55. Hendrickson, J. B. (1962). Molecular geometry. II. Methyl-cyclohexanes and cycloheptanes. Journal of the American Chemical Society, 84, 3355.CrossRefGoogle Scholar
  56. Hendrickson, J. B. (1973). Molecular geometry. VIII. Proton magnetic resonance studies of cycloheptane conformations. Journal of the American Chemical Society, 95, 494.CrossRefGoogle Scholar
  57. Hill, T. L. (1946). On steric effects. The Journal of Chemical Physics, 14, 465.CrossRefGoogle Scholar
  58. Hill, T. L. (1948). Steric effects. I. Van der Waals potential energy curves. The Journal of Chemical Physics, 16, 399.CrossRefGoogle Scholar
  59. Huang, J., & MacKerell, A. D., Jr. (2014). Induction of peptide bond dipoles drives cooperative helix formation in the (AAQAA)3 peptide. Biophysical Journal, 107, 991.CrossRefGoogle Scholar
  60. Huang, J., Lopes, P. E. M., Roux, B., & MacKerell, A. D., Jr. (2014). Recent advances in polarizable force fields for macromolecules: Microsecond simulations of proteins using the classical Drude oscillator model. The Journal of Physical Chemistry Letters, 5, 3144.CrossRefGoogle Scholar
  61. Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110, 1657.CrossRefGoogle Scholar
  62. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79, 926.CrossRefGoogle Scholar
  63. Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118, 11225.CrossRefGoogle Scholar
  64. Jurecka, P., Cerny, J., Hobza, P., & Salahub, D. R. (2007). Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of noncovalent complexes compared with ab initio quantum mechanics calculations 80. Journal of Computational Chemistry, 28, 555.CrossRefGoogle Scholar
  65. Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105, 6474.CrossRefGoogle Scholar
  66. Khutorsky, V. E., & Poltev, V. I. (1976). Conformations of double-helical nucleic acids. Nature, 264, 483.CrossRefGoogle Scholar
  67. Kitaigorodski, A. I. (1959). Organic chemical crystallography. New York: Consultants Bureau.Google Scholar
  68. Kitaigorodsky, A. I. (1973). Molecular crystals and molecules. New York: Academic.Google Scholar
  69. Kitaygorodsky, A. I. (1960). Calculation of conformations of organic molecules. Tetrahedron, 9, 183.CrossRefGoogle Scholar
  70. Kitaygorodsky, A. I. (1961). The interaction curve of non-bonded carbon and hydrogen atoms and its application. Tetrahedron, 14, 230.CrossRefGoogle Scholar
  71. Klauda, J. B., Venable, R. M., MacKerell, A. D., Jr., & Pastor, R. W. (2008). Considerations for lipid force field development. Current Topics in Membranes, 60, 1.CrossRefGoogle Scholar
  72. Lam, A. R., Rodriguez, J. J., Rojas, A., Scheraga, H. A., & Mukamel, S. (2013). Tracking the mechanism of fibril assembly by simulated two-dimensional ultraviolet spectroscopy. The Journal of Physical Chemistry A, 117, 342.CrossRefGoogle Scholar
  73. Langlet, J., Claverie, P., Caron, F., & Boeuve, J. C. (1981). Interactions between nucleic acid bases in hydrogen bonded and stacked configurations: The role of the molecular charge distribution. International Journal of Quantum Chemistry, 20, 299.CrossRefGoogle Scholar
  74. Laury, M. L., Wang, L.-P., Pande, V. S., Head-Gordon, T. L., & Ponder, J. W. (2015). Revised parameters for the AMOEBA polarizable atomic multipole water model. Journal of Physical Chemistry B. doi:10.1021/jp510896n.Google Scholar
  75. Leach, A. R. (2001). Molecular modelling: Principles and applications. Harlow: Prentice Hall (Pearson Education).Google Scholar
  76. Leach, S. J., Némethy, G., & Scheraga, H. A. (1966a). Computation of the sterically allowed conformations of peptides. Biopolymers, 4, 369.CrossRefGoogle Scholar
  77. Leach, S. J., Némethy, G., & Scheraga, H. A. (1966b). Intramolecular steric effects and hydrogen bonding in regular conformations of polyamino acids. Biopolymers, 4, 887.CrossRefGoogle Scholar
  78. Levitt, M., & Lifson, S. (1969). Refinement of protein conformations using a macromolecular energy minimization procedure. Journal of Molecular Biology, 46, 269.CrossRefGoogle Scholar
  79. Lewars, E. G. (2011). Computational chemistry. Introduction to the theory and applications of molecular and quantum mechanics (2nd ed.). Dordrecht/Heidelberg/London/New York: Springer.Google Scholar
  80. Lifson, S., & Warshel, A. (1968). Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n‐alkane molecules. The Journal of Chemical Physics, 49, 5116.CrossRefGoogle Scholar
  81. Lii, L.-H., & Allinger, N. L. (1991). The MM3 force field for amides, polypeptides and proteins. Journal of Computational Chemistry, 12, 186.CrossRefGoogle Scholar
  82. Lii, L.-H., Chen, K.-H., Johnson, G. P., French, A. D., & Allinger, N. L. (2005). The external-anomeric torsional effect. Carbohydrate Research, 340, 853.CrossRefGoogle Scholar
  83. Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J., & Scheraga, H. A. (1999). Protein structure prediction by global optimization of a potential energy function. Proceedings of the National Academy of Sciences of the United States of America, 96, 5482.CrossRefGoogle Scholar
  84. Lorecchio, C., Venanzi, M., Mazzuca, C., Lettieri, R., Palleschi, A., Thi, T. H. N., Cardová, L., Drasar, P., & Monti, D. (2014). Tuning the chiroptical and morphological properties of steroidal-porphyrin aggregates: A mechanistic, structural, and MM investigation. Organic & Biomolecular Chemistry, 12, 3956.CrossRefGoogle Scholar
  85. Maciejczyk, M., Spasic, A., Liwo, A., & Scheraga, H. A. (2010). Coarse-grained model of nucleic acid bases. Journal of Computational Chemistry, 31, 1644.Google Scholar
  86. MacKerell, A. D., Jr. (2004). Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry, 25, 1584.CrossRefGoogle Scholar
  87. Mahoney, M. W., & Jorgensen, W. L. (2001). Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential functions. The Journal of Chemical Physics, 115, 10758.CrossRefGoogle Scholar
  88. Mason, R. (1969). The intermolecular potential and structure of crystals of aromatic molecules. Molecular Crystals and Liquid Crystals, 9, 3.CrossRefGoogle Scholar
  89. Matsuoka, O., Clementi, E., & Yoshimine, M. (1976). CI study of the water dimer potential surface. The Journal of Chemical Physics, 64, 1351.CrossRefGoogle Scholar
  90. McAllister, S. R., & Floudas, C. A. (2010). An improved hybrid global optimization method for protein tertiary structure prediction. Computational Optimization and Applications, 45, 377.CrossRefGoogle Scholar
  91. McGuire, R. F., Momany, F. A., & Scheraga, H. A. (1972). Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. The Journal of Physical Chemistry, 76, 375.CrossRefGoogle Scholar
  92. Momany, F. A., Vanderkooi, G., & Scheraga, H. A. (1968). Determination of intermolecular potentials from crystal data. I. General theory and application to crystalline benzene at several temperatures. Proceedings of the National Academy of Sciences of the United States of America, 61, 429.CrossRefGoogle Scholar
  93. Momany, F. A., Carruthers, L. M., & Scheraga, H. A. (1974). Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing configurations and lattice energies in crystals of amino acids. The Journal of Physical Chemistry, 78, 1621.CrossRefGoogle Scholar
  94. Momany, F. A., McGuire, R., Burgess, A., & Scheraga, H. (1975). Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. The Journal of Physical Chemistry, 79, 2361.CrossRefGoogle Scholar
  95. Nada, H., & van der Eerden, J. P. J. M. (2003). An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O. The Journal of Chemical Physics, 118, 7401.CrossRefGoogle Scholar
  96. Nash, H. A., & Bradley, D. F. (1966). Calculation of the lowest energy configurations of nucleotide base pairs on the basis of an electrostatic model. The Journal of Chemical Physics, 45, 1380.CrossRefGoogle Scholar
  97. Némethy, G., & Scheraga, H. A. (1965). Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. Biopolymers, 3, 155.CrossRefGoogle Scholar
  98. Némethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S., & Scheraga, H. A. (1992). Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. The Journal of Physical Chemistry, 96, 6472.CrossRefGoogle Scholar
  99. Ogata, K., & Nakamura, S. (2015). Improvement of parameters of the AMBER potential force field for phospholipids for description of thermal phase transitions. The Journal of Physical Chemistry. doi:10.1021/acs.jpcb.5b01656.Google Scholar
  100. Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656.CrossRefGoogle Scholar
  101. Pauling, L., & Corey, R. B. (1951). The pleated sheet, a new layer configuration of polypeptide chains. Proceedings of the National Academy of Sciences of the United States of America, 37, 251.CrossRefGoogle Scholar
  102. Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America, 37, 205.CrossRefGoogle Scholar
  103. Pawar, S., Sawant, S., Nerkar, A., & Bhosale, A. (2014). In silico design, synthesis and pharmacological screening of novel 2-(6-substituted benzo [d] thiazol-2-yl) isoindoline-1, 3-diones as potential COX-2 inhibitors for anti-inflammatory activity. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 353.Google Scholar
  104. Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham, T. E., Laughton, C. A., & Orozco, M. (2007). Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers. Biophysical Journal, 92, 3817.CrossRefGoogle Scholar
  105. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., & Klaus Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781.CrossRefGoogle Scholar
  106. Pinilla, C., Irani, A. H., Nicola Seriani, N., & Scandolo, S. (2012). Ab initio parameterization of an all-atom polarizable and dissociable force field for water. The Journal of Chemical Physics, 136, 114511.CrossRefGoogle Scholar
  107. Pol-Fachin, L., Hugo Verli, H., & Lins, R. D. (2014). Extension and validation of the GROMOS 53A6glyc parameter set for glycoproteins. Journal of Computational Chemistry, 35, 2087.CrossRefGoogle Scholar
  108. Polozov, R. V., Poltev, V. I., & Sukhorukov, B. I. (1973). Relation of the interactions of nucleic acid bases to the helical conformations of polynucleotides. Studia Biophysica, 40, 13.Google Scholar
  109. Poltev, V. I., & Bruskov, V. I. (1978). On molecular mechanisms of nucleic acid synthesis fidelity aspects 1. Contribution of base interactions. Journal of Theoretical Biology, 70, 69.CrossRefGoogle Scholar
  110. Poltev, V. I., & Shulyupina, N. V. (1986). Simulation of interactions between nucleic-acid bases by refined atom-atom potential functions. Journal of Biomolecular Structure & Dynamics, 3, 739.CrossRefGoogle Scholar
  111. Poltev, V. I., & Sukhorukov, B. I. (1967). Theoretical examination of the physical nature of the intermolecular interactions determining the conformational state of polynucleotides. Biophysics (Moscow), 12, 879.Google Scholar
  112. Poltev, V. I., & Sukhorukov, B. I. (1970). Semiempirical calculations of interaction energy of DNA nitrous bases. Studia Biophysica, 24/25, 179.Google Scholar
  113. Poltev, V. I., Grokhlina, T. I., & Malenkov, G. G. (1984). Hydration of nucleic-acid bases studied using novel atom-atom potential functions. Journal of Biomolecular Stucture & Dynamics, 2, 413.CrossRefGoogle Scholar
  114. Ponder, J. W. (2015). TINKER – Software tools for molecular design. http://dasher.wustl.edu/tinker/
  115. Pullman, A., & Pullman, B. (1968). Aspects of the electronic structure of the purine and pyrimidine bases of the nucleic acids and of their interactions. Advances in Quantum Chemistry, 4, 267.CrossRefGoogle Scholar
  116. Pullman, B., Claverie, P., & Caillet, J. (1966). Van der Waals-London interactions and the configuration of hydrogen-bonded purine and pyrimidine pairs. Proceedings of National Academy of Sciences of United States of America, 55, 904.CrossRefGoogle Scholar
  117. Rae, A. I. M., & Mason, R. (1968). The intermolecular potential and the lattice energy of benzene. Proceedings of the Royal Society A, 304, 487.CrossRefGoogle Scholar
  118. Ramachandran, G. N. (1990). This week’s citation classic. Current Contents, 10, 119.Google Scholar
  119. Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7, 95.CrossRefGoogle Scholar
  120. Ramachandran, K. I., Deepa, G., & Namboori, K. (2008). Computational chemistry and molecular modeling: Principles and applications. Berlin: Springer.Google Scholar
  121. Raman, E. P., Guvench, O., & MacKerell, A. D., Jr. (2010). CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. The Journal of Physical Chemistry B, 114, 12981.CrossRefGoogle Scholar
  122. Rasse, D., Warme, P. K., & Scheraga, H. A. (1974). Refinement of the X-ray structure of rubredoxin by conformational energy calculations. Proceedings of the National Academy of Sciences of the United States of America, 71, 3736.CrossRefGoogle Scholar
  123. Ren, P., & Ponder, J. W. (2003). Polarizable atomic multipole water model for molecular mechanics simulation. The Journal of Physical Chemistry B, 107, 5933.CrossRefGoogle Scholar
  124. Ren, P., & Ponder, J. W. (2004). Temperature and pressure dependence of the AMOEBA water model. The Journal of Physical Chemistry B, 108, 13427.CrossRefGoogle Scholar
  125. Ren, P., Wu, C., & Ponder, J. W. (2011). Polarizable atomic multipole-based molecular mechanics for organic molecules. Journal of Chemical Theory and Computation, 7, 314.CrossRefGoogle Scholar
  126. Renugopalakrishnan, V., Lakshminarayanan, A. V., & Sasisekharan, V. (1971). Stereochemistry of nucleic acids and polynucleotides III. Electronic charge distribution. Biopolymers, 10, 1159.CrossRefGoogle Scholar
  127. Ripoll, D. R., & Scheraga, H. A. (1988). On the multiple-minima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo method – Tests on poly(l-alanine). Biopolymers, 27, 1283.CrossRefGoogle Scholar
  128. Rojas, A. V., Liwo, A., & Scheraga, H. A. (2011). A study of the α-helical intermediate preceding the aggregation of the amino-terminal fragment of the β amyloid peptide (Aβ1–28). The Journal of Physical Chemistry B, 115, 12978.CrossRefGoogle Scholar
  129. Savelyev, A., & MacKerell, A. D., Jr. (2014a). Balancing the interactions of ions, water and DNA in 1314 the Drude polarizable force field. The Journal of Physical Chemistry B, 118, 6742.CrossRefGoogle Scholar
  130. Savelyev, A., & MacKerell, A. D., Jr. (2014b). All-atom polarizable force field for DNA based on 1317 the classical Drude oscillator model. Journal of Computational Chemistry, 35, 1219.CrossRefGoogle Scholar
  131. Sawant, R. L., Hardas, D. B., Pawa, K. K., & Shinde, A. K. (2014). QSAR analysis of structurally similar 1, 3, 4-oxadiazole/thiadiazole and 1, 2, 4-triazole derivatives of biphenyl-4-yloxy acetic acid as antiinflammatoryagents. World Journal of Pharmaceutical Research, 3, 1844.Google Scholar
  132. Scheraga, H. A. (2008). From helix–coil transitions to protein folding. Biopolymers, 89, 479.CrossRefGoogle Scholar
  133. Scheraga, H. A. (2015). My 65 years in protein chemistry. Quarterly Reviews of Biophysics, 48, 117.CrossRefGoogle Scholar
  134. Scheraga, H. A., Pillardy, J., Liwo, A., Lee, J., Czaplewski, C., Ripoll, D. R., Wedemeyer, W. J., & Arnautova, Y. A. (2002). Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. Journal of Computational Chemistry, 23, 28.CrossRefGoogle Scholar
  135. Scott, R. A., & Scheraga, H. A. (1966a). Conformational analysis of macromolecules. III. Helical structures of poly-glycine and poly-l-alanine. The Journal of Chemical Physics, 45, 2091.CrossRefGoogle Scholar
  136. Scott, R. A., & Scheraga, H. A. (1966b). Conformational analysis of macromolecules. II. The rotational isomeric states of the normal hydrocarbons. Journal of Chemical Physics, 44, 3054.CrossRefGoogle Scholar
  137. Shi, Y., Xia, Z., Zhang, J., Best, R., Wu, C., Ponder, J. W., & Ren, P. (2013). Polarizable atomic multipole-based AMOEBA force field for proteins. Journal of Chemical Theory and Computation, 9, 4046.CrossRefGoogle Scholar
  138. Shipman, L. L., Burgess, A. W., & Scheraga, H. A. (1975). A new approach to empirical intermolecular and conformational potential energy functions. I. Description of model and derivation of parameters. Proceedings of the National Academy of Sciences of the United States of America, 72, 543.CrossRefGoogle Scholar
  139. Sippl, M. J., Némethy, G., & Scheraga, H. A. (1984). Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O–H⋯O=C hydrogen bonds from packing configurations. Journal of Physics Chemistry, 88, 6231.CrossRefGoogle Scholar
  140. Snir, J., Nemenoff, R. A., & Scheraga, H. A. (1978). A revised empirical potential for conformational, intermolecular, and solvation studies. 5. Development and testing of parameters for amides, amino acids and peptides. The Journal of Physical Chemistry, 82, 2527.CrossRefGoogle Scholar
  141. Song, K., Hornak, V., de los Santos, C., Grollman, A. P., & Simmerling, C. (2008). Molecular mechanics parameters for the FapydG DNA lesion. Journal of Computational Chemistry, 29, 17.CrossRefGoogle Scholar
  142. Stillinger, F. H., & Rahman, A. (1974). Improved simulation of liquid water by molecular dynamics. The Journal of Chemical Physics, 60, 1545.CrossRefGoogle Scholar
  143. Tröster, P., Lorenzen, K., & Tavan, P. (2014). Polarizable six-point water models from computational and empirical optimization. The Journal of Physical Chemistry B, 118, 1589.CrossRefGoogle Scholar
  144. Van der Spoel, D., Lindahl, E., Hess, B., Groehof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701.CrossRefGoogle Scholar
  145. Van Gunsteren, W., Fand, H. J., & Berendsen, C. (1987). Groningen molecular simulation (GROMOS) library manual. Groningen: BIOMOS.Google Scholar
  146. Vanommeslaeghe, K., & MacKerell, A. D., Jr. (2015). CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochimica et Biophysica Acta, General Subjects, 1850, 861.CrossRefGoogle Scholar
  147. Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21, 1049.CrossRefGoogle Scholar
  148. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general AMBER force field. Journal of Computational Chemistry, 25, 1157.CrossRefGoogle Scholar
  149. Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modeling, 25, 247.CrossRefGoogle Scholar
  150. Wang, L.-P., Chen, J., & van Voorhis, T. (2013a). Systematic parametrization of polarizable force fields from quantum chemistry data. Journal of Chemical Theory and Computation, 9, 452.CrossRefGoogle Scholar
  151. Wang, L.-P., Head-Gordon, T., Ponder, J. W., Ren, P., Chodera, J. D., Eastman, P. K., Martinez, T. J., & Pande, V. S. (2013b). Systematic improvement of a classical molecular model of water. The Journal of Physical Chemistry B, 117, 9956.CrossRefGoogle Scholar
  152. Warme, P. K., & Scheraga, H. A. (1974). Refinement of the X-ray structure of lysozyme by complete energy minimization. Biochemistry, 13, 757.CrossRefGoogle Scholar
  153. Warme, P. K., Momany, F. A., Rumball, S. V., & Scheraga, H. A. (1974). Computation of structures of homologous proteins; α-lactalbumin from lysozyme. Biochemistry, 13, 768.CrossRefGoogle Scholar
  154. Warshel, A., & Lifson, S. (1970). Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. The Journal of Chemical Physics, 53, 582.CrossRefGoogle Scholar
  155. Watson, J. D., & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737.CrossRefGoogle Scholar
  156. Weiner, P., & Kollman, P. (1981). AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. Journal of Computational Chemistry, 2, 287.CrossRefGoogle Scholar
  157. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., Jr., & Weiner, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106, 765.CrossRefGoogle Scholar
  158. Westheimer, F. H., & Mayer, J. E. (1946). The theory of the racemization of optically active derivatives of diphenyl. The Journal of Chemical Physics, 14, 733.CrossRefGoogle Scholar
  159. Wiberg, K. B. (1965). A scheme for strain energy minimization. Application to the cycloalkanes. Journal of the American Chemical Society, 87, 1070.CrossRefGoogle Scholar
  160. Williams, D. E. (1966). Nonbonded potential parameters derived from crystalline aromatic hydrocarbons. The Journal of Chemical Physics, 45, 3770.CrossRefGoogle Scholar
  161. Williams, D. E. (1967). Nonbonded potential parameters derived from crystalline hydrocarbons. The Journal of Chemical Physics, 47, 4680.CrossRefGoogle Scholar
  162. Williams, D. E., & Weller, R. R. (1983). Lone-pair electronic effects on the calculated ab initio SCF-MO electric potential and the crystal structures of azabenzenes. Journal of the American Chemical Society, 105, 4143.CrossRefGoogle Scholar
  163. Yan, J. F., Momany, F. A., Hoffmann, R., & Scheraga, H. A. (1970). Energy parameters in polypeptides. II. Semiempirical molecular orbital calculations for model peptides. The Journal of Physical Chemistry, 74, 420.CrossRefGoogle Scholar
  164. Yilmazer, N. D., & Korth, M. (2015). Enhanced semiempirical QM methods for biomolecular interactions. Computational and Structural Biotechnology Journal, 13, 169.CrossRefGoogle Scholar
  165. Yin, Y., Sieradzan, A. K., Liwo, A., He, Y., & Scheraga, H. A. (2015). Physics-based potentials for coarse-grained modeling of protein-DNA interactions. Journal of Chemical Theory and Computation, 11, 1792.CrossRefGoogle Scholar
  166. Yu, W., Lopes, P. E. M., Roux, B., & MacKerell, A. D. (2013). Six-site polarizable model of water based on the classical Drude oscillator. The Journal of Chemical Physics, 138, 034508.CrossRefGoogle Scholar
  167. Zgarbova, M., Otyepka, M., Sponer, J., Mladek, A., Banas, P., Cheatham, T. E., & Jurecka, P. (2011). Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. Journal of Chemical Theory and Computation, 7, 2886.CrossRefGoogle Scholar
  168. Zgarbova, M., Luque, F. J., Sponer, J., Cheatham, T. E., Otyepka, M., & Jurecka, P. (2013). Toward improved description of DNA backbone: Revisiting epsilon and zeta torsion force field parameters. Journal of Chemical Theory and Computation, 9, 2339.CrossRefGoogle Scholar
  169. Zhurkin, V. B., Poltev, V. I., & Florentiev, V. L. (1980). Atom-atom potential functions for conformational calculations of nucleic-acids. Molecular Biology (Moscow), English Translation, 14, 882.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Autonomous University of PueblaPueblaMexico

Personalised recommendations