Advertisement

Statistical Mechanics of Force-Induced Transitions of Biopolymers

  • Sanjay Kumar
Living reference work entry

Abstract

Single molecule force spectroscopy constitutes a robust method for probing the unfolding of biomolecules. Knowledge gained from statistical mechanics is helping to build our understanding about more complex structure and function of biopolymers. Here, we have review some of the models and techniques that have been employed to study force-induced transitions in biopolymers. We briefly describe the merit and limitation of these models and techniques. In this context, we discuss statistical models of polymer along with numerical techniques, which may provide enhanced insight in understanding the unfolding of biomolecules.

Keywords

Partition Function Monte Carlo Exclude Volume Effect Verlet Algorithm Gaussian Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank D. Giri, A. R. Singh, and G. Mishra for many helpful discussions. Financial assistance from the Department of Science and Technology, New Delhi is gratefully acknowledged.

Bibliography

  1. Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106, 1589–1615.CrossRefGoogle Scholar
  2. Allen, M. P., & Tildesley, D. J. (1987). Computer simulations of liquids. Oxford: Oxford Science.Google Scholar
  3. Bhattacharjee, S. M. (2000). Unzipping DNAs: Towards the first step of replication. Journal of Physics A, 33, L423–L428.CrossRefGoogle Scholar
  4. Binder, K. (1995). Monte Carlo and molecular dynamics simulations in polymer science. New York: Oxford University Press.Google Scholar
  5. Binder, K. (1997). Applications of Monte Carlo methods to statistical physics. Reports on Progress in Physics, 60, 487–559.CrossRefGoogle Scholar
  6. Bustamante, C., Smith, S. B., Liphardt, J., & Smith, D. (2000). Single-molecule studies of DNA mechanics. Current Opinion in Structural Biology, 10, 279–285.CrossRefGoogle Scholar
  7. Bustamante, C., Chemla, Y. R., Forde, N. R., & Izhaky, D. (2004). Mechanical processes in biochemistry. The Annual Review of Biochemistry, 73, 705–748.CrossRefGoogle Scholar
  8. Cecconi, C., Shank, E. A., Bustamante, C., & Marqusee, S. (2005). Direct observation of the three-state folding of a single protein molecule. Science, 309, 2057–2060.CrossRefGoogle Scholar
  9. Chatney, D., Cocco, S., Monasson, R., & Thieffry, D. (2004). Multiple aspects of DNA and RNA: From biophysics to bioinformatics: Lecture notes of the Les Houches Summer School. Amsterdam: Elsevier.Google Scholar
  10. Cloizeaux, J. D. (1974). Langrangian theory for a self-avoiding random chain. Physical Review A, 10, 1665–1669.CrossRefGoogle Scholar
  11. Dai, L., Liu, F., & Ou-Yang, Z.-C. (2003). Maximum-entropy calculation of the end-to-end distance distribution of force-stretched chains. Journal of Chemical Physics, 119, 8124.CrossRefGoogle Scholar
  12. de Gennes, P. G. (1979). Scaling concepts in polymer physics. Ithaca/London: Cornell University Press.Google Scholar
  13. des Cloizeaux, J., & Jannink, G. (1990). Polymers in solution. Oxford: Clarendon.Google Scholar
  14. Doi, M., & Edwards, S. F. (1986). The theory of polymer dynamics. Oxford: Clardenden.Google Scholar
  15. Domb, C., & Lebowitz, J. L. (1989). Phase transition and critical phenomena (Vol. 13). New York: Academic.Google Scholar
  16. Forgacs, G., Lipowsky, R., & Nieuwenhuizen, T. M. (1995). The behaviour of interfaces in ordered and disordered systems (Vol. 14). Oxford: Clarendon.Google Scholar
  17. Frenkel, D., & Smit, B. (2002). Understanding molecular simulation. London: Academic.Google Scholar
  18. Giri, D., & Kumar, S. (2006). Effects of the eye phase in DNA unzipping. Physical Review E, 73, 050903(R).CrossRefGoogle Scholar
  19. Grassberger, P., Nadler, W., & Barkema, G. T. (1999). The Monte Carlo approach to biopolymers and protein folding. Singapore: World Scientific.Google Scholar
  20. Grosberg, A. Y., & Khokhlov, A. R. (1994). Statistical physics of macromolecules. New York: American Institute of Physics.Google Scholar
  21. Huenenberger, P. (2005). Thermostat algorithms for molecular dynamics simulations. Advances in Polymer Science, 173, 105–149.CrossRefGoogle Scholar
  22. Kleinert, H. (1990). Path integrals in quantum mechanics, satistics, and polymer physics. Singapore: World Scientific.Google Scholar
  23. Kumar, S. (2009). Can reentrance be observed in force induced transitions? Europhysics Letters, 85, 38003.CrossRefGoogle Scholar
  24. Kumar, S., & Giri, D. (2005). Force-induced conformational transition in a system of interacting stiff polymers: Application to unfolding. Physical Review E, 72, 052901.CrossRefGoogle Scholar
  25. Kumar, S., & Giri, D. (2007). Does changing the pulling direction give better insight into biomolecules? Physical Review Letters, 98, 048101.CrossRefGoogle Scholar
  26. Kumar, S., Giri, D., & Bhattacharjee, S. M. (2005). Force induced tripple point for interacting polymers. Physical Review E, 71, 051804.CrossRefGoogle Scholar
  27. Kumar, S., Jensen, I., Jaconsen, J. L., & Guttmann, A. J. (2007). Role of conformational entropy in force induced biopolymer unfolding. Physical Review Letters, 98, 128101–128104.CrossRefGoogle Scholar
  28. Kumar, S., & Li, M. (2010). Biomolecules under mechanical force. Physics Reports, 486, 1–74.CrossRefGoogle Scholar
  29. Kumar, S., & Mishra, G. (2008). Force-induced stretched state: Effects of temperature. Physical Review E, 78, 011907.CrossRefGoogle Scholar
  30. Landau, D. P., & Binder, K. (2005). A guide to Monte Carlo simulations in statistical physics. New York: Cambridge University Press.CrossRefGoogle Scholar
  31. Leckband, D., & Israelachvili, J. (2001). Intermolecular forces in biology. Quarterly Review of Biophysics, 34, 105–267.CrossRefGoogle Scholar
  32. Lubensky, D. K., & Nelson, D. R. (2000). Pulling pinned polymers and unzipping DNA. Physical Review Letters, 85, 1572–1575.CrossRefGoogle Scholar
  33. Marenduzzo, D., Bhattacharjee, S. M., Maritan, A., Orlandini, E., & Seno, F. (2001a). Dynamical scaling of the DNA unzipping transition. Physical Review Letters, 88, 028102.CrossRefGoogle Scholar
  34. Marenduzzo, D., Trovato, A., & Maritan, A. (2001b). Phase diagram of force-induced DNA unzipping in exactly solvable models. Physical Review E, 64, 031901.CrossRefGoogle Scholar
  35. Marko, J., & Siggia, E. (1995). Stretching DNA. Macromolecules, 28, 8759–8770.CrossRefGoogle Scholar
  36. Mishra, G., Giri, D., & Kumar, S. (2009). Stretching of a single stranded DNA: Evidence for structural transition. Physical Review E, 79, 031930.CrossRefGoogle Scholar
  37. Mishra, P. K., Kumar, S., & Singh, Y. (2003). A simple and exactly solvable model for a semi flexible polymer chain interacting with a surface. Physica A, 323, 453–465.CrossRefGoogle Scholar
  38. Mishra, P. K., Kumar, S., & Singh, Y. (2005). Force-induced desorption of a linear polymer chain adsorbed on an attractive surface. Europhysics Letters, 69, 102–108.CrossRefGoogle Scholar
  39. Muller, M., Katsov, K., & Schick, M. (2006). Biological and synthetic membranes: What can be learned from a coarse-grained description? Physics Reports, 434, 113–176.CrossRefGoogle Scholar
  40. Muller-Plathe, F. (1997). Coarse-graining in polymer simulation: From the atomistictothemesoscopicscaleandback. ChemPhysChem, 3, 754–769.CrossRefGoogle Scholar
  41. Privman, V., & Svrakic, N. M. (1989). Directed models of polymers, interfaces, and clusters. Berlin: Springer.Google Scholar
  42. Rief, M., Clausen-Schaumann, H., & Gaub, H. E. (1999). Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology, 6, 346–349.CrossRefGoogle Scholar
  43. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., & Gaub, H. E. (1997). Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 276, 1109–1112.CrossRefGoogle Scholar
  44. Rosa, A., Hoang, T. X., Marenduzzo, D., & Maritan, A. (2003a). Elasticity of semiflexible polymers with and without self-interactions. Macromolecules, 36, 10095–10102.CrossRefGoogle Scholar
  45. Rosa, A., Marenduzzo, D., Maritan, A., & Seno, F. (2003b). Mechanical unfolding of directed polymers in a poor solvent: Critical exponents. Physical Review E, 67, 041802.CrossRefGoogle Scholar
  46. Singh, A. R., Giri, D., & Kumar, S. (2009a). Force induced unfolding of bio-polymers in a cellular environment: A model study. Journal of Chemical Physics, 131, 065103.CrossRefGoogle Scholar
  47. Singh, A. R., Giri, D., & Kumar, S. (2009b). Effects of molecular crowding on stretching of polymers in poor solvent. Physical Review E, 79, 051801.CrossRefGoogle Scholar
  48. Smith, S. B., Finzi, L., & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258, 1122–1126.CrossRefGoogle Scholar
  49. Smith, S. B., Cui, Y., & Bustamante, C. (1996). Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271, 795–799.CrossRefGoogle Scholar
  50. Thijssen, J. M. (1999). Computational physics. Cambridge: Cambridge University.Google Scholar
  51. Tskhovrebova, L., Trinick, K., Sleep, J. A., & Simons, R. M. (1997). Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature, 387, 308–312.CrossRefGoogle Scholar
  52. Vanderzande, C. (1998). Lattice models of polymers. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  53. Zhou, H. J., Zhou, J., Ou-Yang, Z. C., & Kumar, S. (2006). Collapse transition of two-dimensional flexible and semiflexible polymers. Physical Review Letters, 97, 158302.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhysicsBanaras Hindu UniversityVaranasiIndia

Personalised recommendations