Time-Dependent Density Functional Theory: A Tool to Explore Excited States

  • Daniel Escudero
  • Adèle D. Laurent
  • Denis Jacquemin
Living reference work entry


The accurate description of electronically excited states remains a challenge for theoretical chemistry. Among the vast body of quantum mechanical methods available to perform this task, time-dependent density functional theory (TD-DFT) currently remains the most widely applied method, a success that one can explain not only by its very interesting accuracy/effort ratio but also by the ease to perform TD-DFT calculations for a large number of compounds and properties (absorption and emission spectra, band shapes, dipole moments, electron and proton transfers, etc.) in various environments. In the present chapter, we present TD-DFT as a tool for modeling such excited-state properties, with a focus on several practical aspects (choosing an exchange-correlation functional and an atomic basis set, analyzing the nature of the electronic transitions, comparing results with experiments, including environmental effects, etc.) that are useful to get a quick start. In that framework we rely on a series of examples of increasing complexity considering both organic and inorganic compounds as well as biomolecules.


Polarizable Continuum Model Vibronic Coupling Charge Transfer Excited State Excited State Geometry Quantum Mechanic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to many colleagues and collaborators for exciting discussions and joint works in the field. D.E. and D.J. acknowledges the European Research Council (ERC) for financial support in the framework of a Starting Grant (Marches – 278845).


  1. Adamo, C., & Jacquemin, D. (2013). The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chemical Society Reviews, 42, 845.CrossRefGoogle Scholar
  2. Altun, A., Yokoyama, S., & Morokuma, K. (2009). Mechanism of Spectral Tuning Going from Retinal in Vacuo to Bovine Rhodopsin and its Mutants: Multireference ab Initio Quantum Mechanics/Molecular Mechanics Studies. Journal of Physical Chemistry B, 112, 16883.CrossRefGoogle Scholar
  3. Avila Ferrer, F. J., Improta, R., Santoro, F., & Barone, V. (2011). Computing the inhomogeneous broadening of electronic transitions in solution: a first-principle quantum mechanical approach. Physical Chemistry Chemical Physics, 13(38), 17007.CrossRefGoogle Scholar
  4. Avila Ferrer, F. J., Cerezo, J., Stendardo, E., Improta, R., & Santoro, F. (2013). Insights for an Accurate Comparison of Computational Data to Experimental Absorption and Emission Spectra: Beyond the Vertical Transition Approximation. Journal of Chemical Theory and Computation, 9, 2072.CrossRefGoogle Scholar
  5. Baer, R., Livshits, E., & Salzner, U. (2010). Tuned range-separated hybrids in density functional theoryAnnual Review of Physical Chemistry, 61, 85.Google Scholar
  6. Baerends, E. J., Gritsenko, O. V., & van Meer, R. (2013). The Kohn–Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn–Sham orbital energies. Physical Chemistry Chemical Physics, 15, 16408.CrossRefGoogle Scholar
  7. Baiardi, A., Bloino, J., & Barone, V. (2013). General Time Dependent Approach to Vibronic Spectroscopy Including Franck–Condon, Herzberg–Teller, and Duschinsky Effects. Journal of Chemical Theory and Computation, 9(9), 4097.CrossRefGoogle Scholar
  8. Baková, R., Chergui, M., Daniel, C., Vlček, A., Jr., & Záliš, S. (2011). Relativistic effects in spectroscopy and photophysics of heavy-metal complexes illustrated by spin–orbit calculations of [Re(imidazole)(CO)3(phen)]+. Coordination Chemistry Reviews, 255(7–8), 975. A Celebration of Harry B. Gray’s 75th Birthday.Google Scholar
  9. Barbatti, M., & Crespo-Otero, R. (2015). Surface Hopping Dynamics with DFT Excited States. In N. Ferré, M. Filatov, & M. Huix-Rotllant (Eds.), Density-functional methods for excited states (Topics in current chemistry, pp. 1–30). Berlin/Heidelberg: Springer.Google Scholar
  10. Barone, V., & Biczysko, M., Borkowska-Panek, M., & Bloino, J. (2014). A multifrequency virtual spectrometer for complex bio-organic systems: vibronic and environmental effects on the UV/Vis spectrum of chlorophyll a. ChemPhysChem, 15(15), 3355.Google Scholar
  11. Biancardi, A., Biver, T., Secco, F., & Mennucci, B. (2013). An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools, Physical Chemistry Chemical Physics, 15(13), 4596.CrossRefGoogle Scholar
  12. Brémond, E. A., Kieffer, J., & Adamo, C. (2010). A Reliable Method for Fitting TD-DFT Transitions to Experimental UV-Visible Spectra. Journal of Molecular Structure: THEOCHEM, 954(1–3), 52.CrossRefGoogle Scholar
  13. Cammi, R., & Mennucci, B. (1999). Linear response theory for the polarizable continuum model. Journal of Chemical Physics, 110, 9877.CrossRefGoogle Scholar
  14. Caricato, M., Mennucci, B., Tomasi, J., Ingrosso, F., Cammi, R., Corni, S., & Scalmani, G. (2006). Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory. Journal of Chemical Physics, 124, 124520.CrossRefGoogle Scholar
  15. Caricato, M., Trucks, G. W., Frisch, M. J., & Wiberg, K. B. (2010). Electronic Transition Energies: A Study of the Performance of a Large Range of Single Reference Density Functional and Wave Function Methods on Valence and Rydberg States Compared to Experiment. Journal of Chemical Theory and Computation, 6, 370.CrossRefGoogle Scholar
  16. Casida, M. E. (1995). Time-dependent density-functional response theory for molecules (Recent advances in density functional methods, Vol. 1, pp. 155–192). Singapore: World Scientific.Google Scholar
  17. Casida, M. E., & Huix-Rotllant, M. (2012). Progress in Time-Dependent Density-Functional Theory. Annual Review of Physical Chemistry, 63, 287.CrossRefGoogle Scholar
  18. Chergui, M. (2015). Ultrafast Photophysics of Transition Metal Complexes. Accounts of Chemical Research, 48(3), 801. pMID: 25646968CrossRefGoogle Scholar
  19. Chibani, S., Le Guennic, B., Charaf-Eddin, A., Laurent, A. D., & Jacquemin, D. (2013). Revisiting the optical signatures of BODIPY with ab initio tools. Chemical Sciences, 4, 1950.Google Scholar
  20. Ciofini, I., & Adamo, C. (2007). Accurate Evaluation of Valence and Low-Lying Rydberg States with Standard Time-Dependent Density Functional Theory. Journal of Physical Chemistry A, 111, 5549.CrossRefGoogle Scholar
  21. Cossi, M., & Barone, V. (2001). Time-dependent density functional theory for molecules in liquid solutions. Journal of Chemical Physics, 115, 4708.CrossRefGoogle Scholar
  22. Daniel, C. (2015). Photochemistry and photophysics of transition metal complexes: Quantum chemistry. Coordination Chemistry Reviews, 282–283, 19. Proceedings from the 20th International Symposium on the Photophysics and Photochemistry of Coordination Compounds.Google Scholar
  23. Dierksen, M., & Grimme, S. (2004). The Vibronic Structure of Electronic Absorption Spectra of Large Molecules: A Time-Dependent Density Functional Study on the Influence of “Exact” Hartree–Fock Exchange. Journal of Physical Chemistry A, 108, 10225.CrossRefGoogle Scholar
  24. Escudero, D., & Jacquemin, D. (2015). Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Transactions, 44, 8346.CrossRefGoogle Scholar
  25. Escudero, D., & Thiel, W. (2014). Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes. The Journal of Chemical Physics, 140(19), 194105.CrossRefGoogle Scholar
  26. Furche, F., & Ahlrichs, R. (2002). Adiabatic time-dependent density functional methods for excited state properties. Journal of Chemical Physics, 117, 7433.CrossRefGoogle Scholar
  27. Ghosh, D., Kosenkov, D., Vanovschi, V., Flick, J., Kaliman, I., Shao, Y., Gilbert, A. T. B., Krylov, A. I., & Slipchenko, L. V. (2013). Effective fragment potential method in Q-CHEM: A guide for users and developers. Journal of Computational Chemistry, 34, 1060.CrossRefGoogle Scholar
  28. Goerigk, L., & Grimme, S. (2010). Assessment of TD-DFT methods and of various spin scaled CIS(D) and CC2 versions for the treatment of low-lying valence excitations of large organic dyes. Journal of Chemical Physics, 132, 184103.CrossRefGoogle Scholar
  29. González, L., Escudero, D., & Serrano-Andrés, L. (2012). Progress and Challenges in the Calculation of Electronic Excited States. ChemPhysChem, 13(1), 28.CrossRefGoogle Scholar
  30. Gordon, M. S., Freitag, M., Bandyopadhyay, P., Jensen, J., Kairys, V., & Stevenss, W. J. (2001). The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry. Journal of Physical Chemistry A, 105, 293.CrossRefGoogle Scholar
  31. Gordon, M. S., Fedorov, D. G., Pruitt, S. R., & Slipchenko, L. V. (2012). Fragmentation Methods: A Route to Accurate Calculations on Large Systems. Chemistry Reviews, 112, 632.CrossRefGoogle Scholar
  32. Guido, C. A., Jacquemin, D., Adamo, C., & Mennucci, B. (2010). On the TD-DFT Accuracy in Determining Single and Double Bonds in Excited-State Structures of Organic Molecules. Journal of Physical Chemistry A, 114, 13402.CrossRefGoogle Scholar
  33. Happ, B., Escudero, D., Hager, M. D., Friebe, C., Winter, A., Gorls, H., Altuntas, E., Gonzalez, L., & Schubert, U. S. (2010). N-Heterocyclic Donor- and Acceptor-Type Ligands Based on 2-(1H-[1,2,3]Triazol-4-yl)pyridines and Their Ruthenium(II) Complexes. Journal of Organic Chemistry, 75, 4025–4038.CrossRefGoogle Scholar
  34. Hu, L. H., Söderhjelm, P., & Ryde, U. (2011). On the Convergence of QM/MM Energies. Journal of Chemical Theory and Computation, 7(3), 761.CrossRefGoogle Scholar
  35. Huix-Rotllant, M., Nikiforov, A., Thiel, W., & Filatov, M. (2015). Description of conical intersections with density functional methods. In Density-functional methods for excited states (Topics in current chemistry, vol 368, pp. 445–476). Berlin/Heidelberg: Springer.Google Scholar
  36. Improta, R., Scalmani, G., Frisch, M. J., & Barone, V. (2007). Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. Journal of Chemical Physics, 127, 074504.CrossRefGoogle Scholar
  37. Isegawa, M., Peverati, R., & Truhlar, D. G. (2012). Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies. Journal of Chemical Physics, 137, 244104.CrossRefGoogle Scholar
  38. Jacquemin, D., Preat, J., Wathelet, V., & Perpète, E. A. (2006). Substitution and chemical environment effects on the absorption spectrum of indigo. Journal of Chemical Physics, 124, 074104.CrossRefGoogle Scholar
  39. Jacquemin, D., Wathelet, V., Perpète, E. A., & Adamo, C. (2009a). Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. Journal of Chemical Theory and Computation, 5, 2420.CrossRefGoogle Scholar
  40. Jacquemin, D., Perpète, E. A., Laurent, A. D., Assfeld, X., & Adamo, C. (2009b). Spectral properties of self-assembled squaraine–tetralactam: a theoretical assessment. Physical Chemistry Chemical Physics, 11, 1258.CrossRefGoogle Scholar
  41. Jacquemin, D., Planchat, A., Adamo, C., & Mennucci, B. (2012a). TD-DFT Assessment of Functionals for Optical 0–0 Transitions in Solvated Dyes. Journal of Chemical Theory and Computation, 8, 2359.CrossRefGoogle Scholar
  42. Jacquemin, D., Le Bahers, T., Adamo, C., & Ciofini, I. (2012b). What is the best atomic charge model to describe through-space charge-transfer excitations? Physical Chemistry Chemical Physics, 14, 5383. Code available at Université de Nantes, (Accessed 1 May 2014).Google Scholar
  43. Jacquemin, D., Moore, B., Planchat, A., Adamo, C., & Autschbach, J. (2014). Performance of an Optimally Tuned Range-Separated Hybrid Functional for 0–0 Electronic Excitation Energies. Journal of Chemical Theory and Computation, 10(4), 1677.CrossRefGoogle Scholar
  44. Jäger, M., Freitag, L., & González, L. (2015). Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coordination Chemistry Reviews, 304–305, 146. cOST: European Cooperation in Science and Technology Current Challenges in Supramolecular Artificial Photosynthesis.Google Scholar
  45. Kaliman, I. A., & Slipchenko, L. V. (2013). A new parallel implementation of the effective fragment potential method as a portable software library. Journal of Computational Chemistry, 34, 2284.CrossRefGoogle Scholar
  46. Labat, F., Ciofini, I., Hratchian, H. P., Frisch, M. J., Raghavachari, K., & Adamo, C. (2009). First Principles Modeling of Eosin-Loaded ZnO Films: A Step toward the Understanding of Dye-Sensitized Solar Cell Performances. Journal of the American Chemical Society, 131(40), 14290.CrossRefGoogle Scholar
  47. Latouche, C., Skouteris, D., Palazzetti, F., & Barone, V. (2015). TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes. Journal of Chemical Theory and Computation, 11(7), 3281–3289.CrossRefGoogle Scholar
  48. Laurent, A., & Assfeld, X. (2010). Effect of the enhanced cyan fluorescent protein framework on the UV/visible absorption spectra of some chromophores. The Journal Interdisciplinary Sciences–Computational Life Sciences, 2(1), 38.CrossRefGoogle Scholar
  49. Laurent, A. D., & Jacquemin, D. (2013). TD-DFT benchmarks: A review. International Journal of Quantum Chemistry, 113, 2019.CrossRefGoogle Scholar
  50. Laurent, A. D., Mironov, V. A., Chapagain, P. P., Nemukhin, A. V., & Krylov, A. I. (2012). Conformational Exploration of Two Peptides and Their Hybrid Polymer Conjugates: Potentialities As Self-Aggregating Materials. Journal of Physical Chemistry B, 116, 12426.CrossRefGoogle Scholar
  51. Laurent, A. D., Adamo, C., & Jacquemin, D. (2014). Dye chemistry with time-dependent density functional theory. Physical Chemistry Chemical Physics, 16(28), 14334.CrossRefGoogle Scholar
  52. Le Bahers, T., Adamo, C., & Ciofini, I. (2011). A qualitative index of spatial extent in charge-transfer excitations. Journal of Chemical Theory and Computation, 7, 2498. Code available at Chimie Paristech,
  53. Le Guennic, B., & Jacquemin, D. (2015). Taking Up the Cyanine Challenge with Quantum Tools. Accounts of Chemical Research, 48, 530.CrossRefGoogle Scholar
  54. Liao, R. Z., & Thiel, W. (2012). Comparison of QM-Only and QM/MM Models for the Mechanism of Tungsten-Dependent Acetylene Hydratase. Journal of Chemical Theory and Computation, 8(10), 3793.CrossRefGoogle Scholar
  55. Liu, J., & Liang, W. Z. (2011). Analytical approach for the excited-state Hessian in time-dependent density functional theory: Formalism, implementation, and performance. Journal of Chemical Physics, 135(18), 184111.CrossRefGoogle Scholar
  56. Marenich, A. V., Cramer, C. J., Truhlar, D. G., Guido, C. G., Mennucci, B., Scalmani, G., & Frisch, M. J. (2011). Practical computation of electronic excitation in solution: vertical excitation model. Chemical Sciences, 2, 2143.Google Scholar
  57. Marques, M. A. L., Nogueira, F. M. S., Gross, E. K. U., & Rubio, A. (Eds.). (2012). Fundamentals of time-dependent density functional theory (Lecture notes in physics, Vol. 837). Heidelberg: Springer.Google Scholar
  58. Martin, R. L. (2003). Natural transition orbitals. Journal of Chemical Physics, 118(11), 4775.CrossRefGoogle Scholar
  59. Minaev, B., Baryshnikov, G., & Agren, H. (2014). Principles of phosphorescent organic light emitting devices. Physical Chemistry Chemical Physics, 16, 1719.CrossRefGoogle Scholar
  60. Moore, B., Charaf-Eddin, A., Planchat, A., Adamo, C., Autschbach, J., & Jacquemin, D. (2014). Electronic Band Shapes Calculated with Optimally Tuned Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation, 10(10), 4599.CrossRefGoogle Scholar
  61. Neugebauer, J., Curutchet, C., Munoz-Losa, A., & Mennucci, B. (2010). A Subsystem TDDFT Approach for Solvent Screening Effects on Excitation Energy Transfer Couplings. Journal of Chemical Theory and Computation, 6(6), 1843.CrossRefGoogle Scholar
  62. Niehaus, T. A., Hofbeck, T., & Yersin, H. (2015). Charge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory? RSC Advanced, 5, 63318.CrossRefGoogle Scholar
  63. Peach, M. J. G., Benfield, P., Helgaker, T., & Tozer, D. J. (2008). Excitation energies in density functional theory: An evaluation and a diagnostic test. Journal of Chemical Physics, 128, 044118.CrossRefGoogle Scholar
  64. Presti, D., Labat, F., Pedone, A., Frisch, M. J., Hratchian, H. P., Ciofini, I., Menziani, M. C., & Adamo, C. (2014). Computational Protocol for Modeling Thermochromic Molecular Crystals: Salicylidene Aniline As a Case Study. Journal of Chemical Theory and Computation, 10, 5577.CrossRefGoogle Scholar
  65. Runge, E., & Gross, E. K. U. (1984). Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52, 997.CrossRefGoogle Scholar
  66. Sanchez-Garcia, E., Doerr, M., & Thiel, W. (2010). QM/MM study of the absorption spectra of DsRed.M1 chromophores. Journal of Computational Chemistry, 31(8), 1603.Google Scholar
  67. Santoro, F., Lami, A., Improta, R., Bloino, J., & Barone, V. (2008). Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: The QxQx band of porphyrin as a case study. Journal of Chemical Physics, 128, 224311.CrossRefGoogle Scholar
  68. Santos, A. R., Escudero, D., González, L., & Orellana, G. (2015). Unravelling the Quenching Mechanisms of a Luminescent RuII Probe for CuII. Chemistry – An Asian Journal, 10(3), 622.CrossRefGoogle Scholar
  69. Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. Journal of Chemical Physics, 124, 094107.CrossRefGoogle Scholar
  70. Send, R., Kühn, M., & Furche, F. (2011). Assessing Excited State Methods by Adiabatic Excitation Energies. Journal of Chemical Theory and Computation, 7(8), 2376.CrossRefGoogle Scholar
  71. Senn, H. M., & Thiel, W. (2009). QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition, 48(7), 1198.CrossRefGoogle Scholar
  72. Söderhjelm, P., Husberg, C., Strambi, A., Olivucci, M., & Ryde, U. (2009). Protein Influence on Electronic Spectra Modeled by Multipoles and Polarizabilities. Journal of Chemical Theory and Computation, 5, 649.CrossRefGoogle Scholar
  73. Srebro, M., & Autschbach, J. (2012). Does a Molecule-Specific Density Functional Give an Accurate Electron Density? The Challenging Case of the CuCl Electric Field Gradient. Journal of Physical Chemistry Letters, 3, 576.CrossRefGoogle Scholar
  74. Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemistry Reviews, 105, 2999.CrossRefGoogle Scholar
  75. Ullrich, C. (2012). Time-dependent density-functional theory: Concepts and applications (Oxford graduate texts). New York: Oxford University Press.Google Scholar
  76. Vlček, A., Jr., & Záliš, S. (2007). Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coordination Chemistry Reviews, 251(3–4), 258. A Special Issue Highlighting the Many Aspects of the Electronic Spectrosocpy of Inorganic Compounds.Google Scholar
  77. Wang, F., Ziegler, T., van Lenthe, E., van Gisbergen, S., & Baerends, E. J. (2005). The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry. The Journal of Chemical Physics, 122(20), 204103.CrossRefGoogle Scholar
  78. Wiggins, P., Gareth Williams, J. A., & Tozer, D. J. (2009). Excited state surfaces in density functional theory: A new twist on an old problem. Journal of Chemical Physics, 131, 091101.CrossRefGoogle Scholar
  79. Ziegler, T., Krykunov, M., Seidu, I., & Park, Y. (2015). Constricted Variational Density Functional Theory Approach to the Description of Excited States. In N. Ferré, M. Filatov, & M. Huix-Rotllant (Eds.), Density-functional methods for excited states (Topics in Current Chemistry, vol 368, pp. 61–95). Berlin/Heidelberg: Springer. doi:10.1007/128_2014_611.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Daniel Escudero
    • 1
  • Adèle D. Laurent
    • 1
  • Denis Jacquemin
    • 2
  1. 1.CEISAM, UMR CNRS 6230Université de NantesNantesFrance
  2. 2.Institut universitaire de FranceParisFrance

Personalised recommendations