Advertisement

Metal Interactions with Nucleobases, Base Pairs, and Oligomer Sequences; Computational Approach

  • Jaroslav V. Burda
  • Filip Šebesta
Living reference work entry

Abstract

This chapter concerns some of the computational studies devoted to interactions of metal cations with nucleobases, nucleotides, and short oligonucleotides considered as DNA/RNA models. Our topic is fairly complex, therefore the results obtained using mainly ab initio and DFT methods are discussed. The first part focuses on the interactions of isolated bases with metal cations either in bare, hydrated, or ligated forms. We begin with interactions of naked cations with nucleobases in gas phase. Subsequently, solvation effects using polarizable continuum models are analyzed together with a comparison to explicitly hydrated ions. In the second part, adducts of various metals with base pairs and oligomeric models of DNA/RNA are discussed. Separate sections are devoted to complexes of promising anticancer drugs. Stacked bases and larger systems (quadruplexes) studied by semiempirical and QM/MM methods are mentioned in the last part.

Keywords

Metal Cation Activation Barrier Hepatitis Delta Virus Purine Base Aqua Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The study was supported by projects Grant Agency of the Czech Republic (GAČR) No. P208/12/0622. The authors thank the Meta-Centers in Prague (Charles University and Czech Technical University), Brno (Masaryk University), Pilsen (University of West Bohemia) for the generous support of the computational resources.

Bibliography

  1. Ai, H. Q., Yang, A. B., & Li, Y. G. (2008). Theoretical study on the interactions between Zn2+ and adenine isomers in aqueous phase. Acta Physico-Chimica Sinica, 24(6), 1047–1052.Google Scholar
  2. Alberto, M. E., Butera, V., & Russo, N. (2011). Which one among the Pt-containing anticancer drugs more easily forms monoadducts with G and A DNA bases? A comparative study among oxaliplatin, nedaplatin, and carboplatin. Inorganic Chemistry, 50(15), 6965–6971. doi:10.1021/ic200148n.CrossRefGoogle Scholar
  3. Allen, R. N., Shukla, M. K., Burda, J. V., & Leszczynski, J. (2006). Theoretical study of interaction of urate with Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cations. Journal of Physical Chemistry A, 110, 6139–6144.CrossRefGoogle Scholar
  4. Andrushchenko, V., & Bour, P. (2009). Infrared absorption detection of metal ion-deoxyguanosine monophosphate binding: Experimental and theoretical study. Journal of Physical Chemistry B, 113(1), 283–291. doi:10.1021/jp8058678.CrossRefGoogle Scholar
  5. Anwander, E. H. S., Probst, M. M., & Rode, B. M. (1990). The influence of Li+, Na+, Mg2+, Ca2+, and Zn2+ ions on the hydrogen bonds of the Watson-Crick base pair. Biopolymers, 29, 757–769.CrossRefGoogle Scholar
  6. Aquino, A. J. A., Tunega, D., Haberhauer, G., Gerzabek, M. H., & Lischka, H. (2008). Acid–base properties of a goethite surface model: A theoretical view. Geochimica et Cosmochimica Acta, 72, 3587–3602.CrossRefGoogle Scholar
  7. Arpalahti, J., & Lippert, B. (1990). Inorganic Chemistry, 29, 104–109.CrossRefGoogle Scholar
  8. Bagchi, S., Mandal, D., Ghosh, D., & Das, A. K. (2012). Density functional theory study of interaction, bonding and affinity of group IIb transition metal cations with nucleic acid bases. Chemical Physics, 400, 108–117. doi:10.1016/j.chemphys.2012.03.003.CrossRefGoogle Scholar
  9. Baik, M.-H., Friesner, R. A., & Lippard, S. J. (2002). Theoretical study on the stability of N-glycosyl bonds: Why does N7-platination not promote depurination? Journal of the American Chemical Society, 124, 4495–4503.CrossRefGoogle Scholar
  10. Baik, M. H., Friesner, R. A., & Lippard, S. J. (2003). Theoretical study of cisplatin binding to purine bases: Why does cisplatin prefer guanine over adenine? Journal of the American Chemical Society, 125(46), 14082–14092.CrossRefGoogle Scholar
  11. Banas, P., Jurecka, P., Walter, N. G., Šponer, J., & Otyepka, M. (2009). Theoretical studies of RNA catalysis: Hybrid QM/MM methods and their comparison with MD and QM methods. Methods, 49, 202–216.CrossRefGoogle Scholar
  12. Bancroft, D. P., Lepre, C. A., & Lippard, S. J. (1990). Journal of the American Chemical Society, 112, 6860–6867.CrossRefGoogle Scholar
  13. Bandyopadhyay, D., & Bhattacharyya, D. (2003). Different modes of interaction between hydrated magnesium ion and DNA functional groups: Database analysis and ab initio studies. Journal of Biomolecular Structure & Dynamics, 21(3), 447–458.CrossRefGoogle Scholar
  14. Basch, H., Krauss, M., Stevens, W. J., & Cohen, D. (1986). Binding of Pt(NH3)3 2+ to nucleic acid bases. Inorganic Chemistry, 25, 684–688.CrossRefGoogle Scholar
  15. Benda, L., Straka, M., Tanaka, Y., & Sychrovsky, V. (2011). On the role of mercury in the non-covalent stabilisation of consecutive U-HgII-U metal-mediated nucleic acid base pairs: Metallophilic attraction enters the world of nucleic acids. Physical Chemistry Chemical Physics, 13(1), 100–103. doi:10.1039/C0CP01534B.CrossRefGoogle Scholar
  16. Benda, L., Straka, M., Sychrovský, V., Bouř, P., & Tanaka, Y. (2012). Detection of mercury–TpT dinucleotide binding by Raman spectra: A computational study. The Journal of Physical Chemistry. A, 116(32), 8313–8320. doi:10.1021/jp3045077.CrossRefGoogle Scholar
  17. Benedikt, U., Schneider, W. B., & Auer, A. A. (2013). Modelling electrified interfaces in quantum chemistry: Constant charge vs. constant potential. Physical Chemistry Chemical Physics, 15, 2712–2724.CrossRefGoogle Scholar
  18. Besker, N., Coletti, C., Marrone, A., & Re, N. (2007). Binding of antitumor ruthenium complexes to DNA and proteins: A theoretical approach. Journal of Physical Chemistry B, 111(33), 9955–9964. doi:10.1021/jp072182q.CrossRefGoogle Scholar
  19. Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19, 553–566.CrossRefGoogle Scholar
  20. Burda, J. V., & Gu, J. (2008). A computational study on DNA bases interactions with dinuclear tetraacetato-diaqua-dirhodium(II, II) complex. Journal of Inorganic Biochemistry, 102, 53–62.CrossRefGoogle Scholar
  21. Burda, J. V., & Leszczynski, J. (2003). How strong can the bend be on a DNA helix from cisplatin? DFT and MP2 quantum chemical calculations of cisplatin-bridged DNA purine bases. Inorganic Chemistry, 42(22), 7162–7172.CrossRefGoogle Scholar
  22. Burda, J. V., Šponer, J., & Hobza, P. (1996). Ab Initio study of the interaction of guanine and adenine with various mono- and bivalent metal cations (Li+, Na+, K+, Rb+, Cs+; Cu+, Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+). Journal of Physical Chemistry, 100(17), 7250–7255.CrossRefGoogle Scholar
  23. Burda, J. V., Šponer, J., Leszczynski, J., & Hobza, P. (1997). Interaction of DNA base pairs with various metal cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+, Cd2+, and Hg2+): Nonempirical ab initio calculations on structures, energies, and nonadditivity of the interaction. Journal of Physical Chemistry B, 101(46), 9670–9677.CrossRefGoogle Scholar
  24. Burda, J. V., Šponer, J., & Leszczynski, J. (2000). The interactions of square platinum(II) complexes with guanine and adenine: A quantum-chemical ab initio study of metalated tautomeric forms. Journal of Biological Inorganic Chemistry, 5(2), 178–188.CrossRefGoogle Scholar
  25. Burda, J. V., Šponer, J., & Leszczynski, J. (2001). The influence of square planar platinum complexes on DNA base pairing. An ab initio DFT study. Physical Chemistry Chemical Physics, 3(19), 4404–4411.CrossRefGoogle Scholar
  26. Burda, J. V., Šponer, J., Hrabáková, J., Zeizinger, M., & Leszczynski, J. (2003). The influence of N-7 guanine modifications on the strength of Watson-Crick base pairing and guanine N-1 acidity: Comparison of gas-phase and condensed-phase trends. Journal of Physical Chemistry B, 107(22), 5349–5356.CrossRefGoogle Scholar
  27. Burda, J. V., Pavelka, M., & Simanek, M. (2004). Theoretical model of copper Cu(I)/Cu(II) hydration. DFT and ab initio quantum chemical study. Journal of Molecular Structure (THEOCHEM), 683(1–3), 183–193. doi:10.1016/j.theochem.2004.06.013.CrossRefGoogle Scholar
  28. Burda, J. V., Shukla, M. K., & Leszczynski, J. (2005). Theoretical model of the aqua-copper [Cu(H2O)5] + cation interactions with guanine. Journal of Molecular Modeling, 11, 362–369.CrossRefGoogle Scholar
  29. Burda,Please provide complete reference details for Burda et al. (2015). J. V., Murray, J. S., Gutierrez-Oliva, S., Politzer, P., & Toro-Labbe, A. (2015). Journal of Chemical Theory and Computation. Submitted.Google Scholar
  30. Ceron-Carrasco, J. P., & Jacquemin, D. (2011). Influence of Mg2+ on the guanine-cytosine tautomeric equilibrium: Simulations of the induced intermolecular proton transfer. Chemphyschem, 12(14), 2615–2623. doi:10.1002/cphc.201100264.CrossRefGoogle Scholar
  31. Ceron-Carrasco, J. P., Jacquemin, D., & Cauet, E. (2012a). Cisplatin cytotoxicity: A theoretical study of induced mutations. Physical Chemistry Chemical Physics, 14(36), 12457–12464. doi:10.1039/C2CP40515F.Google Scholar
  32. Ceron-Carrasco, J. P., Requena, A., & Jacquemin, D. (2012b). Impact of DFT functionals on the predicted magnesium-DNA interaction: An ONIOM study. Theoretical Chemistry Accounts, 131(3). doi:10.1007/s00214-012-1188-9.Google Scholar
  33. Chu, V. B., Bai, Y., Lipfert, J., Herschlag, D., & Doniach, S. (2008). A repulsive field: Advances in the electrostatics of the ion atmosphere. Current Opinion in Chemical Biology, 12, 619–625.CrossRefGoogle Scholar
  34. Chval, Z., & Sip, M. (2003). Transition states of cisplatin binding to guanine and adenine: Ab initio reactivity study. Collection of Czechoslovak Chemical Communications, 68, 1105–1118.CrossRefGoogle Scholar
  35. Chval, Z., Kabelac, M., & Burda, J. V. (2013). Mechanism of the cis- Pt(1R,2R-DACH)(H2O)(2) (2+) intrastrand binding to the double-stranded (pGpG)center dot(CpC) dinucleotide in aqueous solution: A computational DFT study. Inorganic Chemistry, 52(10), 5801–5813. doi:10.1021/ic302654s.CrossRefGoogle Scholar
  36. Colominas, C., Luque, F. J., & Orozco, M. (1996). Tautomerism and protonation of guanine and cytosine. Implications in the formation of hydrogen-bonded complexes. Journal of the American Chemical Society, 118(29), 6811–6821.CrossRefGoogle Scholar
  37. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, J., Kenneth, M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., James Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179–5197.CrossRefGoogle Scholar
  38. Deeth, R. J. (2001). The ligand field molecular mechanics model and the stereoelectronic effects of d and s electrons. Coordination Chemistry Reviews, 212(1), 11–34. doi:10.1016/S0010-8545(00)00354-4.CrossRefGoogle Scholar
  39. Deeth, R. J., Anastasi, A., Diedrich, C., & Randell, K. (2009). Molecular modelling for transition metal complexes: Dealing with d-electron effects. Coordination Chemistry Reviews, 253(5–6), 795–816. doi:10.1016/j.ccr.2008.06.018.CrossRefGoogle Scholar
  40. Del Bene, J. E. (1984). Moleculat orbital study of the Li+ complexes of the DNA bases. Journal of Physical Chemistry, 88, 5927–5931.CrossRefGoogle Scholar
  41. Del Bene, J. E. (1985). Molecular orbital theory of the hydrogen bond. Journal of Molecular Structure, 124, 201–212.CrossRefGoogle Scholar
  42. Deubel, D. V. (2003). Reactivity of osmium tetraoxide towards nitrogen heterocycles: Implications for the molecular recognition of DNA mismatch. Angewandte Chemie, International Edition, 42(17), 1974–1977. doi:10.1002/anie.200250462.CrossRefGoogle Scholar
  43. Draper, D. E., Grilley, D., & Soto, A. M. (2005). Ions and RNA folding. Annual Review of Biophysics and Biomolecular Structure, 34, 221–243.CrossRefGoogle Scholar
  44. Egli, M., & Gessner, R. V. (1995). Stereoelectronic effects of deoxyribose O4′ on DNA conformation. Proceedings of the National Academy of Sciences of the United States of America, 92, 180–184.CrossRefGoogle Scholar
  45. Egli, M., Williams, L. D., Fredericks, C. A., & Rich, A. (1991). Biochemistry, 30, 1364.CrossRefGoogle Scholar
  46. Elmahdaoui, L., & Tajmirriahi, H. (1995). A comparative-study of Atp and Gtp complexation with trivalent Al, Ga and Fe cations – Determination of cation-binding site and nucleotide conformation by ftir difference spectroscopy. Journal of Biomolecular Structure & Dynamics, 13(1), 69–86.CrossRefGoogle Scholar
  47. Fortino, M., Marino, T., & Russo, N. (2015). Theoretical study of silver-ion-mediated base pairs: The case of C–Ag–C and C–Ag–A systems. The Journal of Physical Chemistry. A, 119(21), 5153–5157. doi:10.1021/jp5096739.CrossRefGoogle Scholar
  48. Frank Eckert, A. K. (2006). Accurate prediction of basicity in aqueous solution with COSMO-RS. Journal of Computational Chemistry, 27(1), 11–19.CrossRefGoogle Scholar
  49. Fuentes-Cabrera, M., Sumpter, B. G., & Šponer, J. E. (2007). Journal of Physical Chemistry B, 111, 870–875.CrossRefGoogle Scholar
  50. Futera, Z., & Burda, J. V. (2014). Reaction mechanism of Ru(II) piano-stool complexes: Umbrella sampling QM/MM MD study. Journal of Computational Chemistry, 35, 1446–1456.CrossRefGoogle Scholar
  51. Futera, Z., Klenko, J., Šponer, J. E., Šponer, J., & Burda, J. V. (2009a). Interactions of the “Piano-stool” [Ruthenium(II)(g6-arene)(en)Cl]1 complexes with water and nucleobases; ab initio and DFT study. Journal of Computational Chemistry, 30, 1758–1770.CrossRefGoogle Scholar
  52. Futera,Please check if inserted volume number and first number for Futera et al. (2009) is okay. Z., Klenko, J., Šponer, J. E., Šponer, J., & Burda, J. V. (2009b). Interactions of the “piano-stool” [ruthenium(II)(arene)(en)Cl] complexes with water and nucleobases; ab initio and DFT study. Journal of Computational Chemistry, 30, 1758.Google Scholar
  53. Futera, Z., Klenko, J., Šponer, J. E., Šponer, J., & Burda, J. V. (2009c). Interactions of the “Piano-stool” ruthenium(II)(eta(6)-arene)(en)Cl (+) complexes with water and nucleobases; A initio and DFT study. Journal of Computational Chemistry, 30(12), 1758–1770. doi:10.1002/jcc.21179.CrossRefGoogle Scholar
  54. Futera, Z., Platts, J. A., & Burda, J. V. (2012). Binding of piano-stool Ru(II) complexes to DNA; QM/MM study. Journal of Computational Chemistry, 33, 2092–2101.CrossRefGoogle Scholar
  55. Gkionis, K., Mutter, S. T., & Platts, J. A. (2013). QM/MM description of platinum-DNA interactions: Comparison of binding and DNA distortion of five drugs. RSC Advances, 3(12), 4066–4073. doi:10.1039/C3RA23041D.CrossRefGoogle Scholar
  56. Gkionis, K., Kruse, H., Platts, J. A., Mládek, A., Koča, J., & Šponer, J. (2014). Ion binding to quadruplex DNA stems. Comparison of MM and QM descriptions reveals sizable polarization effects not included in contemporary simulations. Journal of Chemical Theory and Computation, 10(3), 1326–1340. doi:10.1021/ct4009969.CrossRefGoogle Scholar
  57. Gresh, N., Šponer, J. E., Špačková, N., Leszczynski, J., & Šponer, J. (2003). Theoretical study of binding of hydrated cations Zn(II) and Mg(II) to guanosine 5′ monophosphate. Towards polarizable molecular mechanics for DNA and RNA. The Journal of Physical Chemistry B, 107, 8669–8681.CrossRefGoogle Scholar
  58. Gu, J. D., & Leszczynski, J. (2000). A remarkable alteration in the bonding pattern: An HF and DFT study of the interactions between the metal cations and the Hoogsteen hydrogen-bonded G-tetrad. Journal of Physical Chemistry A, 104(26), 6308–6313.CrossRefGoogle Scholar
  59. Hud, N. V., Smith, F. W., Anet, F. A. L., & Feigon, J. (1996). The selectivity for K+ versus Na + in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by 1H NMR. Biochemistry, 35(48), 15383–15390.CrossRefGoogle Scholar
  60. Hud, N. V., Schultze, P., & Feigon, J. (1998). Journal of the American Chemical Society, 120, 6403–6408.CrossRefGoogle Scholar
  61. Ida, R., & Wu, G. (2008). Journal of the American Chemical Society, 130, 3590–3594.CrossRefGoogle Scholar
  62. Kabeláč, M., & Hobza, P. (2006). Na+, Mg2+, and Zn2+ binding to all tautomers of adenine, cytosine, and thymine and the eight most stable keto/enol tautomers of guanine: A correlated ab initio quantum chemical study. Journal of Physical Chemistry B, 110, 14515–14523.Google Scholar
  63. Klamt, A., & Schuurmann, G. (1993). Cosmo – A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions, 2(5), 799–805.CrossRefGoogle Scholar
  64. Korth, M., Pitoňák, M., Řezáč, J., & Hobza, P. (2010). A transferable H-bonding correction for semiempirical quantum-chemical methods. Journal of Chemical Theory and Computation, 6(1), 344–352. doi:10.1021/ct900541n.CrossRefGoogle Scholar
  65. Kosenkov, D., Gorb, L., Shishkin, O. V., Šponer, J., & Leszczynski, J. (2008). Journal of Physical Chemistry B, 112, 150–158.CrossRefGoogle Scholar
  66. Kratochvílová, I., Golan, M., Vala, M., Špérová, M., Weiter, M., Páv, O., Šebera, J., Rosenberg, I., Sychrovský, V., Tanaka, Y., & Bickelhaupt, F. M. (2014). Theoretical and experimental study of charge transfer through DNA: Impact of mercury mediated T-Hg-T base pair. The Journal of Physical Chemistry B, 118(20), 5374–5381. doi:10.1021/jp501986a.CrossRefGoogle Scholar
  67. Lilley,Please check if inserted publisher name for Lilley and Eckstein (2008) is okay. D. M. J., & Eckstein, F. (2008). Ribozymes and RNA catalysis. Cambridge: Royal Society of Chemistry.Google Scholar
  68. Lipinski, J. (1989). Electronic structure of platinum(ii) antitumor complexes and their interactions with nucleic acid bases. Part ii. Journal of Molecular Structure (THEOCHEM), 201, 295–305.CrossRefGoogle Scholar
  69. Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B, 113, 6378–6396.CrossRefGoogle Scholar
  70. Margiotta, N., Petruzzella, E., Platts, J. A., Mutter, S. T., Deeth, R. J., Ranaldo, R., Papadia, P., Marzilli, P. A., Marzilli, L. G., Hoeschele, J. D., & Natile, G. (2015). DNA fragment conformations in adducts with Kiteplatin. Dalton Transactions, 44(8), 3544–3556. doi:10.1039/C4DT01796J.CrossRefGoogle Scholar
  71. Marino, T. (2014). DFT investigation of the mismatched base pairs (T-Hg-T)3, (U-Hg-U)3, d(T-Hg-T)2, and d(U-Hg-U)2. Journal of Molecular Modeling, 20(6), 1–5. doi:10.1007/s00894-014-2303-8.CrossRefGoogle Scholar
  72. Marino, T., Toscano, M., Russo, N., & Grand, A. (2004). Gas-phase interaction between DNA and RNA bases and copper(II) ion: A density functional study. International Journal of Quantum Chemistry, 98(4), 347–354.CrossRefGoogle Scholar
  73. Marino, T., Mazzuca, D., Toscano, M., Russo, N., & Grand, A. (2007). International Journal of Quantum Chemistry, 107, 311–320.CrossRefGoogle Scholar
  74. Marino, T., Mazzuca, D., Russo, N., Toscano, M., & Grand, A. (2010). On the interaction of rubidium and cesium mono-, strontium and barium bi-cations with DNA and RNA bases. A theoretical study. International Journal of Quantum Chemistry, 110(1), 138–147. doi:10.1002/qua.22076.CrossRefGoogle Scholar
  75. Marino, T., Russo, N., Toscano, M., & Pavelka, M. (2012). Theoretical investigation on DNA/RNA base pairs mediated by copper, silver, and gold cations. Dalton Transactions, 41(6), 1816–1823. doi:10.1039/C1DT11028D.CrossRefGoogle Scholar
  76. Martínez, J. M., Pappalardo, R. R., & Marcos, E. S. (1997). Study of the Ag+ hydration by means of a semicontinuum quantum-chemical solvation model. Journal of Physical Chemistry A, 101, 4444–4448.CrossRefGoogle Scholar
  77. Matsubara, T., & Hirao, K. (2002). Density functional study of the binding of the cyclen-coordinated M(II) (M = Zn, Cu, Ni) complexes to the DNA base. Why is Zn better to bind? Journal of Molecular Structure (THEOCHEM), 581, 203–213.CrossRefGoogle Scholar
  78. Megger, D. A., Fonseca Guerra, C., Bickelhaupt, F. M., & Müller, J. (2011a). Silver(I)-mediated Hoogsteen-type base pairs. Journal of Inorganic Biochemistry, 105(11), 1398–1404. doi:10.1016/j.jinorgbio.2011.07.005.CrossRefGoogle Scholar
  79. Megger, D. A., Fonseca Guerra, C., Hoffmann, J., Brutschy, B., Bickelhaupt, F. M., & Müller, J. (2011b). Contiguous metal-mediated base pairs comprising two AgI ions. Chemistry - A European Journal, 17(23), 6533–6544. doi:10.1002/chem.201002944.CrossRefGoogle Scholar
  80. Mennucci, B., Cammi, R., & Tomasi, J. (1998). Excited states and solvatochromic shifts within a nonequilibrium solvation approach: A new formulation of the integral equation formalism method at the self-consistent field, configuration interaction, and multiconfiguration self-consistent field level. Journal of Chemical Physics, 109(7), 2798–2807.CrossRefGoogle Scholar
  81. Meyer, M., & Sühnel, J. (2008). Density functional study of adenine tetrads with N6 − H6 · · · N3 hydrogen bonds. The Journal of Physical Chemistry. A, 112(18), 4336–4341. doi:10.1021/jp710242k.CrossRefGoogle Scholar
  82. Meyer, M., Steinke, T., Brandl, M., & Suhnel, J. (2001). Journal of Computational Chemistry, 22(1), 109–124.CrossRefGoogle Scholar
  83. Meyer, M., Hocquet, A., & Sühnel, J. (2005). Interaction of sodium and potassium ions with sandwiched cytosine-, guanine-, thymine-, and uracil-base tetrads. Journal of Computational Chemistry, 26(4), 352–364. doi:10.1002/jcc.20176.CrossRefGoogle Scholar
  84. Meyer, M., Steinke, T., & Sühnel, J. (2007). Density functional study of isoguanine tetrad and pentad sandwich complexes with alkali metal ions. Journal of Molecular Modeling, 13(2), 335–345. doi:10.1007/s00894-006-0148-5.CrossRefGoogle Scholar
  85. Miertus, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1), 117–129.CrossRefGoogle Scholar
  86. Mlynsky, V., Walter, N. G., Šponer, J., Otyepka, M., & Banas, P. (2015). The role of an active site Mg2+ in HDV ribozyme self-cleavage: Insights from QM/MM calculations. Physical Chemistry Chemical Physics, 17(1), 670–679. doi:10.1039/C4CP03857F.CrossRefGoogle Scholar
  87. Morari, C., Bogdan, D., & Muntean, C. M. (2012). Binding effects of Mn2+ and Zn2+ ions on the vibrational properties of guanine-cytosine base pairs in the Watson-Crick and Hoogsteen configurations. Journal of Molecular Modeling, 18(11), 4781–4786. doi:10.1007/s00894-012-1480-6.CrossRefGoogle Scholar
  88. Morari, C., Muntean, C. M., Tripon, C., Buimaga-Iarinca, L., & Calborean, A. (2014). DFT investigation of the vibrational properties of GC Watson-Crick and Hoogsteen base pairs in the presence of Mg2+, Ca2+, and Cu2+ ions. Journal of Molecular Modeling, 20(4). doi:10.1007/s00894-014-2220-x.Google Scholar
  89. Mukhopadhyay, A., Aguilar, B. H., Tolokh, I. S., & Onufriev, A. V. (2014). Introducing charge hydration asymmetry into the generalized born model. Journal of Chemical Theory and Computation, 10, 1788–1794.CrossRefGoogle Scholar
  90. Mutter, S., Margiotta, N., Papadia, P., & Platts, J. (2015). Computational evidence for structural consequences of kiteplatin damage on DNA. JBIC, Journal of Biological Inorganic Chemistry, 20(1), 35–48. doi:10.1007/s00775-014-1207-5.CrossRefGoogle Scholar
  91. Noguera, M., Bertran, J., & Sodupe, M. (2004). A quantum chemical study of Cu2+ interacting with guanine-cytosine base pair. Electrostatic and oxidative effects on intermolecular proton-transfer processes. Journal of Physical Chemistry A, 108(2), 333–341. doi:10.1021/jp036573q.CrossRefGoogle Scholar
  92. Noguera, M., Branchadell, V., Constantino, E., Rios-Font, R., Sodupe, M., & Rodriguez-Santiago, L. (2007). On the bonding of first-row transition metal cations to guanine and adenine nucleobases. Journal of Physical Chemistry A, 111(39), 9823–9829. doi:10.1021/jp073858k.CrossRefGoogle Scholar
  93. Noguera, M., Bertran, J., & Sodupe, M. (2008). Cu2+/+ cation coordination to adenine-thymine base pair. Effects on intermolecular proton-transfer processes. Journal of Physical Chemistry B, 112(15), 4817–4825. doi:10.1021/jp711982g.CrossRefGoogle Scholar
  94. Oliva, R., & Cavallo, L. (2009). Frequency and effect of the binding of Mg2+, Mn2+, and Co2+ ions on the guanine base in Watson-Crick and reverse Watson-Crick base pairs. Journal of Physical Chemistry B, 113(47), 15670–15678. doi:10.1021/jp906847p.CrossRefGoogle Scholar
  95. Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512–7516.CrossRefGoogle Scholar
  96. Pavelka, M., & Burda, J. V. (2005). Theoretical description of copper Cu(I)/Cu(II) complexes in mixed ammine-aqua environment. DFT and ab initio quantum chemical study. Chemical Physics, 312, 193–204. doi:10.1016/j.chemphys.2004.11.034.CrossRefGoogle Scholar
  97. Pavelka, M., Šimánek, M., Šponer, J., & Burda, J. V. (2006). Copper cation interactions with biologically essential types of ligands: A computational DFT study. Journal of Physical Chemistry A, 110, 4795–4809.CrossRefGoogle Scholar
  98. Pavelka, M., Shukla, M. K., Leszczynski, J., & Burda, J. V. (2008). Theoretical study of hydrated copper(II) interactions with guanine: A computational density functional theory study. Journal of Physical Chemistry A, 112(2), 256–267. doi:10.1021/jp074891+.CrossRefGoogle Scholar
  99. Petrov, A. S., Lamm, G., & Pack, G. R. (2005). Calculation of the binding free energy for magnesium – RNA interactions. Biopolymers, 77(3), 137–154.CrossRefGoogle Scholar
  100. Poltev, V. I., Malenkov, G. G., Gonzales, E. J., Teplukhin, A. V., Rein, R., Shibata, M., & Miller, J. H. (1996). Modeling DNA hydration: Comparison of calculated and experimental hydration properties of nuclic acid bases. Journal of Biomolecular Structure and Dynamics, 13(4), 717–725.CrossRefGoogle Scholar
  101. Potaman, V. N., & Soyfer, V. N. (1994). Divalent metal cations upon coordination to the N7 of purines differentially stabilize the PyPuPu DNA triplex due to unequal Hoogsteen-type hydrogen bond enhancement. Journal of Biomolecular Structure & Dynamics, 11, 1035–1040.CrossRefGoogle Scholar
  102. Raber, J., Zhu, C., & Eriksson, L. A. (2005). Theoretical study of cisplatin binding to DNA: The importance of initial complex stabilisation. Journal of Physical Chemistry, 109, 11006–11015.CrossRefGoogle Scholar
  103. Reshetnikov, R. V., Šponer, J., Rassokhina, O. I., Kopylov, A. M., Tsvetkov, P. O., Makarov, A. A., & Golovin, A. V. (2011). Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process. Nucleic Acids Research, 39(22), 9789–9802. doi:10.1093/nar/gkr639.CrossRefGoogle Scholar
  104. Řezáč, J., Fanfrlík, J., Salahub, D., & Hobza, P. (2009). Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes carious types of noncovalent complexes. Journal of Chemical Theory and Computation, 5(7), 1749–1760. doi:10.1021/ct9000922.CrossRefGoogle Scholar
  105. Rosenberg, B., Van Camp, L., & Krigas, T. (1965). Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 205(4972), 698–699.CrossRefGoogle Scholar
  106. Rosenberg, B., Van Camp, L., Trosko, J. L., & Mansour, V. H. (1969). Platinum drugs; a new class of potent antitumor agents. Nature, 222, 385–391.CrossRefGoogle Scholar
  107. Roux, B., Yu, H. A., & Karplus, M. (1990). Molecular basis for the born model of ion solvation. Journal of Physical Chemistry, 94, 4683–4688.CrossRefGoogle Scholar
  108. Rozsnyai, F., & Ladik, J. (1970). Calculation of effects of hydration and divalent metal ions on DNA base pairs. Bulletin of the American Physical Society, 15(3), 325.Google Scholar
  109. Rulisek, L., & Šponer, J. (2003). Outer-shell and inner-shell coordination of phosphate group to hydrated metal ions (Mg2+, Cu,2 + Zn2+, Cd2+) in the presence and absence of nucleobase. The role of nonelectrostatic effects. Journal of Physical Chemistry B, 107(8), 1913–1923. doi:10.1021/jp027058f.CrossRefGoogle Scholar
  110. Russo, N., & Toscano, M., A. G. (2001). Lithium affinity for DNA and RNA nucleobases. The role of theoretical information in the elucidation of the mass spectrometry data. Journal of Physical Chemistry B, 105, 4735–4741.CrossRefGoogle Scholar
  111. Russo, N., Toscano, M., & Grand, A. (2003). Gas-phase absolute Ca2+ and Mg2+ affinity for nucleic acid bases. A theoretical determination. Journal of Physical Chemistry A, 107(51), 11533–11538. doi:10.1021/jp0358681.CrossRefGoogle Scholar
  112. Saenger, W. (1983). Principles of nucleic acid structure. New York: Springer.Google Scholar
  113. Santangelo, M. G., Antoni, P. M., Spingler, B., & Jeschke, G. (2010). Can copper(II) mediate Hoogsteen base-pairing in a left-handed DNA duplex? A pulse EPR study. ChemPhysChem, 11, 599–606.CrossRefGoogle Scholar
  114. Schmidt, K. S., Reedijk, J., Weisz, K., Basilio Janke, E. M., Šponer, J. E., Šponer, J., & Lippert, B. (2002). Loss of Hoogsteen pairing ability upon N1 adenine platinum binding. Inorganic Chemistry, 41, 2855–2863.CrossRefGoogle Scholar
  115. Schreiber, M., & Gonzalez, L. (2007a). Structure and bonding of Ag(I)-DNA base complexes and Ag(I)-adenine-cytosine mispairs: An ab initio study. Journal of Computational Chemistry, 28, 2299–2308. doi:10.1002/jcc.20743.CrossRefGoogle Scholar
  116. Schreiber, M., & Gonzalez, L. (2007b). The role of Ag(I) ions in the electronic spectroscopy of adenine-cytosine mispairs A MS-CASPT2 theoretical study. Journal of Photochemistry and Photobiology A: Chemistry, 190(2–3), 301–309. doi:10.1016/j.jphotochem.2007.01.035.CrossRefGoogle Scholar
  117. Šebera, J., Burda, J. V., Straka, M., Ono, A., Kojima, C., Tanaka, Y., & Sychrovsky, V. (2013a). Chemistry - A European Journal, 19, 9884–9894.Google Scholar
  118. Šebera, J., Burda, J., Straka, M., Ono, A., Kojima, C., Tanaka, Y., & Sychrovský, V. (2013b). Formation of a thymine-HgII-thymine metal-mediated DNA base pair: Proposal and theoretical calculation of the reaction pathway. Chemistry - A European Journal, 19(30), 9884–9894. doi:10.1002/chem.201300460.CrossRefGoogle Scholar
  119. Šebesta, F., & Burda, J. V. (2016). Reduction process of tetraplatin in the presence of deoxyguanosine monophosphate (dGMP): A computational DFT study. Chemistry - A European Journal, 22, 1037–1047.CrossRefGoogle Scholar
  120. Setnicka, V., Novy, J., Bohm, S., Sreenivasachary, N., Urbanova, M., & Volka, K. (2008). Molecular structure of guanine-quartet supramolecular assemblies in a gel-state based on a DFT calculation of infrared and vibrational circular dichroism spectra. Langmuir, 24(14), 7520–7527. doi:10.1021/la800611h.CrossRefGoogle Scholar
  121. Sigel, H. (1993). Interactions of metal ions with nucleotides and nucleic acids and their constituents. Chemical Society Reviews, 22, 255–267.CrossRefGoogle Scholar
  122. Sigel,Please check if inserted volume number for Sigel and Lippert (1999) is okay. R. K. O., & Lippert, B. (1999). Chemical Communications, 21, 2167.Google Scholar
  123. Šponer,Author names “Sebera” and “Sponer” have been changed to “Šebera” and “Šponer” throughout the chapter. Please check if okay. J., & Spackova, N. (2007). Methods, 43, 278–284.Google Scholar
  124. Šponer, J., Burda, J. V., Mejzlik, P., Leszczynski, J., & Hobza, P. (1997). Hydrogen-bonded trimers of DNA bases and their interaction with metal cations: Ab initio quantum-chemical and empirical potential study. Journal of Biomolecular Structure & Dynamics, 14(5), 613–628.CrossRefGoogle Scholar
  125. Šponer, J., Burda, J. V., Sabat, M., Leszczynski, J., & Hobza, P. (1998a). Interaction between the guanine-cytosine Watson-Crick DNA base pair and hydrated group IIa (Mg2+, Ca2+, Sr2+, Ba2+) and group IIb (Zn2+, Cd2+, Hg2+) metal cations. Journal of Physical Chemistry A, 102(29), 5951–5957.CrossRefGoogle Scholar
  126. Šponer, J., Sabat, M., Burda, J. V., Doody, A. M., Leszczynski, J., & Hobza, P. (1998b). Stabilization of the purine center dot purine center dot pyrimidine DNA base triplets by divalent metal cations. Journal of Biomolecular Structure & Dynamics, 16(1), 139–143.CrossRefGoogle Scholar
  127. Šponer, J., Sabat, M., Burda, J., Leszczynski, J., Hobza, P., & Lippert, B. (1999a). Metal ions in non-complementary DNA base pairs: An ab initio study of Cu(I), Ag(I), and Au(I) complexes with cytosine-adenine base pair. Journal of Biological Inorganic Chemistry, 4, 537–545.CrossRefGoogle Scholar
  128. Šponer, J., Burda, J. V., Leszczynski, J., & Hobza, P. (1999b). Interactions of hydrated IIa and IIb group metal cations with thioguanine-cytosine DNA base pair: Ab initio and density functional theory investigation of polarization effects, differences among cations, and flexibility of the cation hydration shell. Journal of Biomolecular Structure & Dynamics, 17(1), 61–77.CrossRefGoogle Scholar
  129. Šponer, J., Šponer, J. E., Gorb, L., Leszczynski, J., & Lippert, B. (1999c). Metal-stabilized rare tautomers and mispairs of DNA bases: N6-metalated adenine and N4-metalated cytosine, theoretical and experimental views. Journal of Physical Chemistry A, 103, 11406–11413.CrossRefGoogle Scholar
  130. Šponer, J., Sabat, M., Burda, J. V., Leszczynski, J., & Hobza, P. (1999d). Interaction of the adenine-thymine Watson-Crick and adenine-adenine reverse-Hoogsteen DNA base pairs with hydrated group IIa (Mg2+, Ca2+, Sr2+, Ba2+) and IIb (Zn2+, Cd2+, Hg2+) metal cations: Absence of the base pair stabilization by metal-induced polarization effects. Journal of Physical Chemistry B, 103(13), 2528–2534.CrossRefGoogle Scholar
  131. Šponer, J., Sabat, M., Burda, J. V., Leszczynski, J., Hobza, P., & Lippert, B. (1999e). Metal ions in non-complementary DNA base pairs: An ab initio study of Cu(I), Ag(I), and Au(I) complexes with the cytosine-adenine base pair. Journal of Biological Inorganic Chemistry, 4(5), 537–545.CrossRefGoogle Scholar
  132. Šponer, J., Šponer, J. E., & Leszczynski, J. (2000a). Cation – Pi and amino-acceptor interactions between hydrated metal cations and DNA bases. A quantum-chemical view. Journal of Biomolecular Structure and Dynamics, 17(6), 1087–1096.CrossRefGoogle Scholar
  133. Šponer, J., Sabat, M., Gorb, L., Leszczynski, J., Lippert, B., & Hobza, P. (2000b). The effect of metal binding to the N7 site of purine nucleotides on their structure, energy, and involvement in base pairing. Journal of Physical Chemistry B, 104(31), 7535–7544. doi:10.1021/jp001711m.CrossRefGoogle Scholar
  134. Šponer, J. E., Leszczynski, J., Glahe, F., Lippert, B., & Šponer, J. (2001). Protonation of platinated adenine nucleobases. Gas phase vs condensed phase picture. Inorganic Chemistry, 40, 3269–3278.CrossRefGoogle Scholar
  135. Šponer, J., Mládek, A., Špačková, N., Cang, X., Cheatham, T. E., & Grimme, S. (2013). Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations. Journal of the American Chemical Society, 135(26), 9785–9796. doi:10.1021/ja402525c.CrossRefGoogle Scholar
  136. Sychrovsky, V., Šponer, J., & Hobza, P. (2004). Theoretical calculation of the NMR spin-spin coupling constants and the NMR shifts allow distinguishability between the specific direct and the water-mediated binding of a divalent metal cation to guanine. Journal of the American Chemical Society, 126(2), 663–672.CrossRefGoogle Scholar
  137. Tanaka, Y., Kojima, C., Morita, E. H., Kasai, Y., Yamasaki, K., Ono, A., Kainosho, M., & Taira, K. (2002). Journal of the American Chemical Society, 124, 4595–4601.CrossRefGoogle Scholar
  138. van der Wijst, T., Guerra, C. F., Swart, M., Bickelhaupt, F. M., & Lippert, B. (2009). Rare tautomers of 1-methyluracil and 1-methylthymine: Tuning relative stabilities through coordination to Pt-II complexes. Chemistry - A European Journal, 15(1), 209–218. doi:10.1002/chem.200801476.CrossRefGoogle Scholar
  139. Varnali, T., & Tozumcalgan, D. (1995). Interaction of divalent metal-cations and nucleotides – A computational study. Structural Chemistry, 6(4–5), 343–348.CrossRefGoogle Scholar
  140. Wang, F. Y., Habtemariam, A., van der Geer, E. P. L., Fernandez, R., Melchart, M., Deeth, R. J., Aird, R., Guichard, S., Fabbiani, F. P. A., Lozano-Casal, P., Oswald, I. D. H., Jodrell, D. I., Parsons, S., & Sadler, P. J. (2005). Controlling ligand substitution reactions of organometallic complexes: Tuning cancer cell cytotoxicity. PNAS, 102(51), 18269–18274.CrossRefGoogle Scholar
  141. Wu, Y. B., Bhattacharyya, D., King, C. L., Baskerville-Abraham, I., Huh, S. H., Boysen, G., Swenberg, J. A., Temple, B., Campbell, S. L., & Chaney, S. G. (2007). Solution structures of a DNA dodecamer duplex with and without a cisplatin 1,2-d(GG) intrastrand cross-link: Comparison with the same DNA duplex containing an oxaliplatin 1,2-d(GG) intrastrand cross-link. Biochemistry, 46(22), 6477–6487.CrossRefGoogle Scholar
  142. Yamaguchi, H., Šebera, J., Kondo, J., Oda, S., Komuro, T., Kawamura, T., Daraku, T., Kondo, Y., Okamoto, I., Ono, A., Burda, J. V., Kojima, C., Sychrovský, V., & Tanaka, Y. (2014). The structure of metallo-DNA with consecutive T-HgII-T base-pairs ex-plains positive reaction entropy for the metallo-base-pair formation. Nucleic Acids Research, 42, 4094–4099.CrossRefGoogle Scholar
  143. Yurenko, Y. P., Novotny, J., Sklenar, V., & Marek, R. (2014). Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: A comprehensive quantum chemical approach. Physical Chemistry Chemical Physics, 16(5), 2072–2084. doi:10.1039/C3CP53875C.CrossRefGoogle Scholar
  144. Zeizinger, M., Burda, J. V., & Leszczynski, J. (2004). The influence of a sugar-phosphate backbone on the cisplatin-bridged BpB models of DNA purine bases. Quantum chemical calculations of Pt(II) bonding characteristics. Physical Chemistry Chemical Physics, 6(10), 3585–3590.CrossRefGoogle Scholar
  145. Zhang, Y., & Huang, K. X. (2007). On the interactions of hydrated metal cations (Mg2+, Mn2+, Ni2+, Zn2+) with guanine-cytosine Watson-Crick and guanine-guanine reverse-Hoogsteen DNA base pairs. Journal of Molecular Structure (THEOCHEM), 812(1–3), 51–62. doi:10.1016/j.theochem.2007.02.009.CrossRefGoogle Scholar
  146. Zilberberg,Please check if inserted first page for Zilberberg et al. (1997) is okay. I. L., Avdeev, V. I., & Zhidomirov, G. M. (1997). Effect of cisplatin binding on guanine in nucleic acid: An ab initio study. Journal of Molecular Structure (THEOCHEM), 418, 73.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePrague 2Czech Republic

Personalised recommendations