Advertisement

Variation of the Surface to Bulk Contribution to Cluster Properties

  • Antonis N. Andriotis
  • Zacharias G. Fthenakis
  • Madhu Menon
Living reference work entry

Abstract

Recent computer simulations have indicated that there is a linear relationship between the melting and the Curie temperatures for Ni n (n ≤ 201) clusters. In this chapter, it is argued that this result is a consequence of the fact that the surface and the core (bulk) contributions to the cluster properties vary with the cluster size in an analogous way. The universal aspect of this result is also discussed. Among the many interesting consequences resulting from this relationship is the intriguing possibility of the coexistence of melting and magnetization. As demonstrated, these conclusions have as their origin the major contribution coming from the melting/magnetization ratio arising from surface effects and appear to overshadow all other contributions. As a result, this can be quantified with approximate methods which are suitable for describing any major surface contribution to a cluster property.

Keywords

Cluster Size Curie Temperature Cluster Property Spin Configuration Magnetic Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The present work is supported by grants from US-DOE (DE-FG02-00ER45817 and DE-FG02-07ER46375).

References

  1. Anderson, P. W., & Hasegava, H. (1955). Considerations on double exchange. Physical Review, 100, 675.CrossRefGoogle Scholar
  2. Andriotis, A. N., & Menon, M. (1998). Tight-binding molecular-dynamics study of ferromagnetic clusters. Physical Review B, 57, 10069.CrossRefGoogle Scholar
  3. Andriotis, A. N., & Menon, M. (2001). Greens function embedding approach to quantum conductivity of single wall carbon nanotubes. Journal of Chemical Physics, 115, 2737.CrossRefGoogle Scholar
  4. Andriotis, A. N., & Menon, M. (2004). Orbital magnetism: Pros and cons for enhancing the cluster magnetism. Physical Review Letters, 93, 026402.CrossRefGoogle Scholar
  5. Andriotis, A. N., Menon, M., Froudakis, G. E., Fthenakis, Z., & Lowther, J. E. (1998). A tight-binding molecular dynamics study of ni(m)si(n) binary clusters. Chemical Physics Letters, 292, 487.CrossRefGoogle Scholar
  6. Andriotis, A. N., Menon, M., Froudakis, G. E., & Lowther, J. E. (1999). Tight-binding molecular dynamics study of transition metal carbide clusters. Chemical Physics Letters, 301, 503.CrossRefGoogle Scholar
  7. Andriotis, A. N., Menon, M., & Froudakis, G. E. (2000). Contrasting bonding behaviors of 3-d transition metal atoms with graphite and c60. Physical Review B, 62, 9867.CrossRefGoogle Scholar
  8. Andriotis, A. N., Menon, M., & Srivastava, D. (2002). Transfer matrix approach to quantum conductivity calculations in single wall carbon nanotubes. Journal of Chemical Physics, 117, 2836.CrossRefGoogle Scholar
  9. Andriotis, A. N., Fthenakis, Z., & Menon, M. (2006). Theoretical study of the effect of temperature on the magnetism of transition metal clusters. Europhysics Letters, 76, 1088.CrossRefGoogle Scholar
  10. Andriotis, A. N., Fthenakis, Z. G., & Menon, M. (2007). Correlated variation of melting and curie temperatures of nickel clusters. Physical Review B, 75, 073413.CrossRefGoogle Scholar
  11. Baletto, F., & Ferrando, R. (2005). Structural properties of nanoclusters: Energetic, thermodynamic and kinetic effects. Reviews of Modern Physics, 77, 371.CrossRefGoogle Scholar
  12. Bansman, J., Baker, S. H., Binns, C., Blackman, J. A., Bucher, J. P., Dorantes-Davila, J., Dupuis, V., Favre, L., Kechrakos, D., Kleibert, A., Meiwes-Broer, K. H., Pastor, G. M., Perez, A., Toulemonde, O., Trohidou, K. N., Tuaillon, J., & Xie, Y. (2005). Magnetic and structural properties of isolated and assembled clusters. Surface Science Reports, 56, 189.CrossRefGoogle Scholar
  13. Buffat, P., & Borel, J. P. (1976). Size effect on the melting temperature of gold particles. Physical Review A, 13, 2287.CrossRefGoogle Scholar
  14. Diep, H. T., Sawada, S., & Sugano, S. (1989). Melting and magnetic ordering in transition-metal microclusters. Physical Review B, 39, 9252.CrossRefGoogle Scholar
  15. Doye, J. P. K., & Calvo, F. (2001). Entropic effects on the size dependence of cluster structures. Physical Review Letters, 86, 3570.CrossRefGoogle Scholar
  16. Erkos, S. (2001). In D. Stauffer (Ed.), Annual reviews of computational physics (Vol. IX). Singapore: World Scientific.Google Scholar
  17. Fanourgakis, G. S., Farantos, S. C., Parneix, P., & Brechignac, P. (1997). An effective transition state for a complex cluster isomerization process: Comparison between anharmonic and harmonic models for mg + ar 12. Journal of Chemical Physics, 106, 4954.CrossRefGoogle Scholar
  18. Fthenakis, Z., Andriotis, A. N., & Menon, M. (2003a). Temperature evolution of structural and magnetic properties of transition metal clusters. Journal of Chemical Physics, 119, 10911.CrossRefGoogle Scholar
  19. Fthenakis, Z., Andriotis, A. N., & Menon, M. (2003b). Understanding the structure of metal encapsulated Si cages and nanotubes. Journal of Chemical Physics, 119, 10911.CrossRefGoogle Scholar
  20. Garcia-Rodeja, J., Rey, C., Gallego, L. J., & Alonso, J. A. (1994). Molecular-dynamics study of the structures, binding energies, and melting of clusters of fcc transition and noble metals using the voter and chen version of the embedded-atom model. Physical Review B, 49, 8495.CrossRefGoogle Scholar
  21. Garrigos, R., Cheyssac, P., & Kofman, R. (1989). Melting for lead particles of very small sizes: Influence of surface phenomena. Zeitschrift für Physik D, 12, 497.CrossRefGoogle Scholar
  22. Gerion, D., Hirt, A., Billas, I. M. L., Chatelain, A., & de Heer, W. A. (2000). Experimental specific heat of iron, cobalt, and nickel clusters studied in a molecular beam. Physical Review B, 62, 7491.CrossRefGoogle Scholar
  23. Gunes, B., & Erkoc, S. (2000). Melting and fragmentation of nickel nanparticles: Molecular-dynamics simulations. International Journal of Modern Physics, 11, 1567.CrossRefGoogle Scholar
  24. Harrison, W. (1980). Electronic structure and properties of solids. San Francisco: W. H. Freeman.Google Scholar
  25. Huang, H., Sun, C. Q., & Hing, P. (2000). Surface bond contraction and its effect on the nanometric sized lead zirconate titanate. Journal of Physics: Condensed Matter, 12, L127.Google Scholar
  26. Kato, M., & Kokubo, F. (1994). Partially antiferromagnetic state in the triangular hubbard model. Physical Review B, 49, 8864.CrossRefGoogle Scholar
  27. Lai, S. L., Guo, J. Y., Petrova, V., Ramanath, G., & Allen, L. H. (1996). Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Physical Review Letters, 77, 99.CrossRefGoogle Scholar
  28. Lathiotakis, N. N., Andriotis, A. N., Menon, M., & Connolly, J. (1996). Tight binding molecular dynamics study of Ni clusters. Journal of Chemical Physics, 104, 992.CrossRefGoogle Scholar
  29. Lee, Y. J., Lee, E. K., Kim, S., & Nieminen, R. M. (2001). Effect of potential energy distribution on the melting of clusters. Physical Review Letters, 86, 999.CrossRefGoogle Scholar
  30. Menon, M., & Subbaswamy, K. R. (1997). Nonorthogonal tight-binding molecular-dynamics scheme for silicon with improved transferability. Physical Review B, 55, 9231.CrossRefGoogle Scholar
  31. Nayak, S. K., Khanna, S. N., Rao, B. K., & Jena, P. (1998). Thermodynamics of small nickel clusters. Journal of Physics: Condensed Matter, 10, 10853.Google Scholar
  32. Nose, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 81, 511.CrossRefGoogle Scholar
  33. Ojeda, M. A., Dorantes-Davila, J., & Pastor, G. (1999). Noncollinear cluster magnetism in the framework of the hubbard model. Physical Review B, 60, 6121.CrossRefGoogle Scholar
  34. Qi, Y., Cagin, T., Johnson, W. L., & Goddard, W. A. (2001). Melting and crystallization in Ni nanoclusters: The mesoscale regime. Journal of Chemical Physics, 115, 385.CrossRefGoogle Scholar
  35. Rey, C., Gallego, L. J., Garcia-Rogeja, J., Alonso, J. A., & Iniguez, M. P. (1993). Molecular-dynamics study of the binding energy and melting of transition-metal clusters. Physical Review B, 48, 8253.CrossRefGoogle Scholar
  36. Schmidt, M., Kusche, R., Kronmuller, W., von Issendorff, B., & Haberland, H. (1997). Experimental determination of the melting point and heat capacity for a free cluster of 139 sodium atoms. Physical Review Letters, 79, 99.CrossRefGoogle Scholar
  37. Sun, D. Y., & Gong, X. G. (1998). Structural properties and glass transition in Al n clusters. Physical Review B, 57, 4730.CrossRefGoogle Scholar
  38. Sutton, A. P., & Chen, J. (1990). Long-range Finnis-Sinclair potentials. Philosophical Magazine Letters, 61, 139.CrossRefGoogle Scholar
  39. Uhl, M., Sanrdatskii, L. M., & Kubler, J. (1994). Spin fluctuations in γ-fe and in fe 3 pt invar from local-density-functional calculations. Physical Review B, 50, 291.CrossRefGoogle Scholar
  40. Weerasinghe, S., & Amar, F. G. (1993). Absolute classical densities of states for very anharmonic systems and applications to the evaporation of rare gas clusters. Journal of Chemical Physics, 98, 4967.CrossRefGoogle Scholar
  41. Yang, C. C., & Jiang, Q. (2005). Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Materialia, 53, 3305.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Antonis N. Andriotis
    • 1
    • 2
  • Zacharias G. Fthenakis
    • 1
    • 2
  • Madhu Menon
    • 1
    • 2
  1. 1.Institute of Electronic Structure and Laser, FORTHHeraklioGreece
  2. 2.Department of Physics and Astronomy and Center for Computational SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations