Abstract
This chapter provides information on various carbon allotropes and in-depth details of structural, electronic, and chemical properties of graphene, fullerenes, and single-walled carbon nanotubes (SWCNTs). We have written an overview of different computational methods that were employed to understand various properties of carbon nanostructures. Importance of application of computational methods in exploring different sizes of fullerenes and their isomers is given. The concept of isolated pentagon rule (IPR) in fullerene chemistry has been revealed. The computational and experimental studies involving Stone–Wales (SW) and vacancy defects in fullerene structures are discussed in this chapter. The relationship between the local curvature and the reactivity of the defect-free and defective fullerene and single-walled carbon nanotubes has been revealed. We reviewed the influence of different defects in graphene on hydrogen addition. The viability of hydrogen and fluorine atom additions on the external surface of the SWCNTs is revealed using computational techniques. We have briefly pointed out the current utilization of carbon nanostructures and their potential applications.
Similar content being viewed by others
Bibliography
Abanin, D. A., Lee, P. A., & Levitov, L. S. (2006). Spin-filtered edge states and quantum hall effect in graphene. Physical Review Letters, 96, 176803-1–176803-4.
Achiba, Y., Kikuchi, K., Aihara, Y., Wakabayashi, Y., Miyake, Y., & Kainosho, M. (1995). In P. Bernier, D. S. Bethune, L. Y. Chiang, T. W. Ebbesen, R. M. Metzger, & J. W. Mintmire, J. W. (Eds.), Higher fullerenes: Structure and properties (Materials Research Society symposium proceedings, Vol. 359, p. 3). Pittsburgh, PA: Materials Research Society.
Achiba, Y., Kikuchi, K., Aihara, Y., Wakabayashi, T., Miyake, Y., & Kainosho, M. (1996). Fullerenes and Endofullerenes: Model Substances?. In W. Andreoni (Ed.), The chemical physics of fullerenes 10 (and 5) years later: the far-reaching impact of the discovery of C60 (p. 139). Dordrecht: Kluwer.
Akdim, B., Kar, T., Duan, X., & Pachter, R. (2007). Density functional theory calculations of ozone adsorption on sidewall single-wall carbon nanotubes with Stone-Wales defects. Chemical Physics Letters, 445, 281–287.
Amorim, R. G., Fazzio, A., Antonelli, A., Novaes, F. D., & da Silva, A. J. R. (2007). Divacancies in graphene and carbon nanotubes. Nano Letters, 7, 2459–2462.
Amsharov, K. Y., & Jensen, M. (2008). A C78 fullerene precursor: Toward the direct synthesis of higher fullerenes. Journal of Organic Chemistry, 73, 2931–2934.
An, W., Gao, Y., Bulusu, S., & Zeng, X. C. (2005). Ab initio calculation of bowl, cage, and ring isomers of C20 and C20 -. Journal of Chemical Physics, 122, 204109-1–204109-8.
Andzelm, J., Govind, N., & Maiti, A. (2006). Nanotube-based gas sensors – Role of structural defects. Chemical Physics Letters, 421, 58–62.
Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I., & Hersam, M. C. (2006). Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotechnology, 1, 60–65.
Austin, S. J., Fowler, P. W., Manolopoulos, D. E., & Zerbetto, F. (1995). The Stone-Wales map forC60. Chemical Physics Letters, 235, 146–151.
Avila, A. F., & Lacerda, G. S. R. (2008). Molecular mechanics applied to single-walled carbon nanotubes. Materials Research, 11, 325–333.
Avouris, P., Chen, Z. H., & Perebeinos, V. (2007). Carbon-based electronics. Nature Nanotechnology, 2, 605–615.
Bakry, R., Vallant, R. M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C. W., & Bonn, G. K. (2007). Medicinal applications of fullerenes. International Journal of Nanomedicine, 2, 639–649.
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902–907.
Barth, W. E., & Lawton, R. G. (1966). Dibenzo[ghi, mno]fluoranthene. Journal of the American Chemical Society, 88, 380–381.
Baughman, R. H., Zakhidov, A. A., & de Heer, W. A. (2002). Carbon nanotubes-the route toward applications. Science, 297, 787–792.
Beavers, C. M., Zuo, T., Duchamp, J. C., Harich, K., Dorn, H. C., Olmstead, M. M., & Balch, A. L. (2006). Tb3N@C84: An improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule. Journal of the American Chemical Society, 128, 11352–11353.
Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemistry Physics, 98, 5648–5652.
Becker, L., Bada, J. L., Winans, R. E., Hunt, J. E., Bunch, T. E., & French, B. M. (1994). Fullerenes in the 1.85-billion-year-old Sudbury impact structure. Science, 265, 642–645.
Berthe, M., Yoshida, S., Ebine, Y., Kanazawa, K., Okada, A., Taninaka, A., Takeuchi, O., Fukui, N., Shinohara, H., Suzuki, S., Sumitomo, K., Kobayashi, Y., Grandidier, B., Stievenard, D., & Shigekawa, H. (2007). Reversible defect engineering of single-walled carbon nanotubes using scanning tunneling microscopy. Nano Letters, 7, 3623–3627.
Bethune, D. S., Klang, C.-H., de Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., & Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605–607.
Bettinger, H. F. (2004). Effects of finite carbon nanotube length on sidewall addition of fluorine atom and methylene. Organic Letters, 6, 731–734.
Bettinger, H. F. (2005). The reactivity of defects at the sidewalls of single-walled carbon nanotubes: The Stone−Wales defect. Journal of Physical Chemistry B, 109, 6922–6924.
Bettinger, H. F. (2006). Addition of carbenes to the sidewalls of single-walled carbon nanotubes. Chemistry – A European Journal, 12, 4372–4379.
Bettinger, H. F., Yakobson, B. I., & Scuseria, G. E. (2003). Scratching the surface of buckminsterfullerene: The barriers for Stone-Wales transformation through symmetric and asymmetric transition states. Journal of the American Chemical Society, 125, 5572–5580.
Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., Ponomarenko, L. A., Morozov, S. V., Gleeson, H. F., Hill, E. W., Geim, A. K., & Novoselov, K. S. (2008). Graphene-based liquid crystal device. Nano Letters, 8, 1704–1708.
Bo, Z., Mao, S., Han, Z. J., Cen, K., Chen, J., & Ostrikov, K. (2015). Emerging energy and environmental applications of vertically-oriented graphenes. Chemical Society Reviews, 44, 2108–2121.
Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A. C., Ruoff, R. S., & Vittorio Pellegrini, V. (2015). Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 347, 1246501.
Bosi, S., Ros, T. D., Spalluto, G., Balzarini, J., & Pratoa, M. (2003). Synthesis and anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 13, 4437–4440.
Boukhvalov, D. W., & Katsnelson, M. I. (2008). Chemical functionalization of graphene with defects. Nano Letters, 8, 4373–4379.
Boukhvalov, D. W., Katsnelson, M. I., & Lichtenstein, A. I. (2008). Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B, 77, 035427-1–035427-7.
Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2007). Electromechanical resonators from graphene sheets. Science, 315, 490–493.
Burda, C., Samia, A. C. S., Hathcock, D. J., Huang, H., & Yang, S. (2002). Experimental evidence for the photoisomerization of higher fullerenes. Journal of the American Chemical Society, 124, 12400–12401.
Buseck, P. R., Tsipursky, S. J., & Hettich, R. (1992). Fullerenes from the geological environment. Science, 257, 215–217.
Cabrera-Sanfelix, P., & Darling, G. R. (2007). Dissociative adsorption of water at vacancy defects in graphite. The Journal of Physical Chemistry C, 111, 18258–18263.
Calaminici, P., Geudtner, G., & Koster, A. M. (2009). First-principle calculations of large fullerenes. Journal of Chemical Theory and Computation, 5, 29–32.
Carlson, J. M., & Scheffler, M. (2006). Structural, electronic, and chemical properties of nanoporous carbon. Physical Review Letters, 96, 046806-1–046806-4.
Carpio, A., Bonilla, L. L., de Juan, F., & Vozmediano, M. A. H. (2008). Dislocations in graphene. New Journal of Physics, 10, 053021-1–053021-13.
Chakraborty, A. K., Woolley, R. A. J., Butenko, Y. V., Dhanak, V. R., Šiller, L., & Hunt, M. R. C. (2007). A photoelectron spectroscopy study of ion-irradiation induced defects in single-wall carbon nanotubes. Carbon, 45, 2744–2750.
Chandra, N., Namilae, S., & Shet, C. (2004). Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects. Physical Review B, 69, 094101-1–094101-12.
Charlier, J.-C. (2002). Defects in carbon nanotubes. Accounts of Chemical Research, 35, 1063–1069.
Charlier, J.-C., Ebbesen, T. W., & Lambin, P. (1996). Structural and electronic properties of pentagon- heptagon pair defects in carbon nanotubes. Physical Review B, 53, 11108–11113.
Chaur, M. N., Valencia, R., Rodríguez-Fortea, A., Poblet, J. M., & Echegoyen, L. (2009a). Trimetallic nitride endohedral fullerenes: Experimental and theoretical evidence for the M3N6+@C 2n 6- model. Angewandte Chemie, International Edition, 48, 1425–1428.
Chaur, M. N., Melin, F., Ortiz, A. L., & Echegoyen, L. (2009b). Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angewandte Chemie, International Edition, 48, 7514–7538.
Chen, Z. (2004). The smaller fullerene C50, isolated as C50Cl10. Angewandte Chemie, International Edition, 43, 4690–4691.
Chen, Z., Thiel, W., & Hirsch, A. (2003). Reactivity of the convex and concave surfaces of single-walled carbon nanotubes (SWCNTs) towards addition reactions: Dependence on the carbon-atom pyramidalization. Chemical Physics and Physical Chemistry, 4, 93–97.
Chen, K., Song, S., Liu, F., & Xue, D. (2015). Structural design of graphene for use in electrochemical energy storage devices. Chemical Society Reviews, 44, 6230–6257.
Chico, L., Crespi, V. H., Benedict, L. X., Louie, S. G., & Cohen, M. L. (1996). Pure carbon nanoscale devices: Nanotube heterojunctions. Physical Review Letters, 76, 971–974.
Cho, E., Shin, S., & Yoon, Y.-G. (2008). First-principles studies on carbon nanotubes functionalized with azomethine ylides. The Journal of Physical Chemistry C, 112, 11667–11672.
Christian, J. F., Wan, Z., & Anderson, S. L. (1992). O++C60 · C60O+ production and decomposition, charge transfer, and formation of C59O+. Dopeyball or [CO@C58 +]. Chemical Physics Letters, 199, 373–378.
Chun, H., Hahm, M. G., Homma, Y., Meritz, R., Kuramochi, K., Menon, L., Ci, L., Ajayan, P. M., & Jung, Y. J. (2009). Engineering low-aspect ratio carbon nanostructures: Nanocups, nanorings, and nanocontainers. ACS Nano, 3, 1274–1278.
Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A., & Khlobystov, A. N. (2010). Direct transformation of graphene to fullerene. Nature Chemistry, 2, 450–453.
Cioslowski, J., Rao, N., & Moncrieff, D. (2002). Electronic structures and energetics of [5,5] and [9,0] single-walled carbon nanotubes. Journal of the American Chemical Society, 124, 8485–8489.
Close, G. F., Yasuda, S., Paul, B., Fujita, S., & Wong, H. S. P. (2008). A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. Nano Letters, 8, 706–709.
Cohen, M. L. (1993). Predicting useful materials. Science, 261, 307–308.
Crassous, J., Rivera, J., Fender, N. S., Shu, L., Echegoyen, L., Thilgen, C., Herrmann, A., & Diederich, F. (1999). Chemistry of C84: Separation of three constitutional isomers and optical resolution of D 2 -C84 by using the “Bingel-Retro-Bingel” strategy. Angewandte Chemie, International Edition, 38, 1613–1617.
Cuesta, I. G., Pedersen, T. B., Koch, H., & de Meras, A. S. (2006). Carbon nanorings: A challenge to theoretical chemistry. Chemical Physics and Physical Chemistry, 7, 2503–2507.
Cyranski, M. K., Howard, S. T., & Chodkiewicz, M. L. (2004). Bond energy, aromatic stabilization energy and strain in IPR fullerenes. Chemical Communications, 2458–2459
Dai, H. (2002). Carbon nanotubes: Synthesis, integration, and properties. Accounts of Chemical Research, 35, 1035–1044.
David, W. I. F., Ibberson, R. M., Matthewman, J. C., Prassides, K., Dennis, T. J. S., Hare, J. P., Kroto, H. W., Taylor, R., & Walton, D. R. M. (1991). Crystal structure and bonding of ordered C60. Nature, 353, 147–149.
David, V. P., Lin, X., Zhang, H., Liu, S., & Kappes, M. M. (1992). Transmission electron microscopy of C70 single crystals at room temperature. Journal of Materials Research, 7, 2440–2446.
Deng, J.-P., Ju, D.-D., Her, G.-R., Mou, C.-Y., Chen, C.-J., Lin, Y.-Y., & Han, C.-C. (1993). Odd- numbered fullerene fragment ions from C60 oxides. Journal of Physical Chemistry, 97, 11575–11577.
Denis, P. A., Iribarne, F., & Faccio, R. (2009). Hydrogenated double wall carbon nanotubes. Journal of Chemical Physics, 130, 194704-1–194704-10.
Dennis, T. J. S., & Shinohara, H. (1998). Isolation and characterisation of the two major isomers of [84]fullerene (C84). Chemical Communications, 619–620.
Dereli, G., & Sungu, B. (2007). Temperature dependence of the tensile properties of single-walled carbon nanotubes: O(N) tight-binding molecular-dynamics simulations. Physical Review B, 75, 184104-1–184104-6.
Dewar, M. J. S., & Thiel, W. (1977). Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, 99, 4899–4907.
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. P. (1985). Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902–3909.
Dewar, M. J. S., Jie, C., & Yu, J. (1993). SAM1; The first of a new series of general purpose quantum mechanical molecular models. Tetrahedron, 49, 5003–5038.
Dhar, S., Liu, Z., Thomale, J., Dai, H., & Lippard, S. J. (2008). Targeted single-wall carbon nanotube- mediated Pt(IV) prodrug delivery using folate as a homing device. Journal of the American Chemical Society, 130, 11467–11476.
Diederich, F., Ettl, R., Rubin, Y., Whetten, R. L., Beck, R., Alvarez, M., Anz, S., Sensharma, D., Wudl, F., Khemani, K. C., & Koch, A. (1991a). The higher fullerenes: Isolation and characterization of C76, C84, C90, C94, and C70O, an oxide of D5h-C70. Science, 252, 548–551.
Diederich, F., Whetten, R. L., Thilgen, C., Ettl, R., Chao, I., & Alvarez, M. M. (1991b). Fullerene isomerism: Isolation of C 2v ,-C78 and D 3 -C78. Science, 254, 1768–1770.
Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., & Heben, M. J. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386, 377–379.
Dinadayalane, T. C., & Leszczynski, J. (2007a). Toward nanomaterials: Structural, energetic and reactivity aspects of single-walled carbon nanotubes. In P. B. Balbuena & J. M. Seminario (Eds.), Nanomaterials: Design and simulation (Theoretical and computational chemistry, Vol. 18, pp. 167–199). Amsterdam: Elsevier.
Dinadayalane, T. C., & Leszczynski, J. (2007b). StoneWales defects with two different orientations in (5, 5) single-walled carbon nanotubes: A theoretical study. Chemical Physics Letters, 434, 86–91.
Dinadayalane, T. C., & Leszczynski, J. (2009). Toward understanding of hydrogen storage in single-walled carbon nanotubes by chemisorption mechanism. In J. Leszczynski & M. K. Shukla (Eds.), Practical aspects of computational chemistry: Methods, concepts and applications (pp. 297–313). Dordrecht: Springer.
Dinadayalane, T. C., & Sastry, G. N. (2001). Synthetic strategies toward buckybowls and C60: Benzannulation is remarkably facile compared to cyclopentannulation. Tetrahedron Letters, 42, 6421–6423.
Dinadayalane, T. C., & Sastry, G. N. (2002a). Structure-energy relationships in curved polycyclic aromatic hydrocarbons: Study of benzocorannulenes. Journal of Organic Chemistry, 67, 4605–4607.
Dinadayalane, T. C., & Sastry, G. N. (2002b). An assessment of semiempirical (MNDO, AM1 and PM3) methods to model buckybowls. Journal of Molecular Structure (THEOCHEM), 579, 63–72.
Dinadayalane, T. C., & Sastry, G. N. (2003). Isolated pentagon rule in buckybowls: A computational study on thermodynamic stabilities and bowl-to-bowl inversion barriers. Tetrahedron, 59, 8347–8351.
Dinadayalane, T. C., Priyakumar, U. D., & Sastry, G. N. (2001). Theoretical studies on the effect of sequential benzannulation to corannulene. Journal of Molecular Structure (THEOCHEM), 543, 1–10.
Dinadayalane, T. C., Priyakumar, U. D., & Sastry, G. N. (2002). Ring closure synthetic strategies toward buckybowls: Benzannulation versus cyclopentannulation. Journal of the Chemical Society, Perkin Transactions, 2, 94–101.
Dinadayalane, T. C., Deepa, S., & Sastry, G. N. (2003). Is peri hydrogen repulsion responsible for flattening buckybowls? The effect of ring annelation to the rim of corannulene. Tetrahedron Letters, 44, 4527–4529.
Dinadayalane, T. C., Deepa, S., Reddy, A. S., & Sastry, G. N. (2004). Density functional theory study on the effect of substitution and ring annelation to the rim of corannulene. Journal of Organic Chemistry, 69, 8111–8114.
Dinadayalane, T. C., Gorb, L., Simeon, T., & Dodziuk, H. (2007a). Cumulative p-p interaction triggers unusually high stabilization of linear hydrocarbons inside the single-walled carbon nanotube. International Journal of Quantum Chemistry, 107, 2204–2210.
Dinadayalane, T. C., Kaczmarek, A., Łukaszewicz, J., & Leszczynski, J. (2007b). Chemisorption of hydrogen atoms on the sidewalls of armchair single-walled carbon nanotubes. Journal of Physical Chemistry C, 111, 7376–7383.
Ding, F. (2005). Theoretical study of the stability of defects in single-walled carbon nanotubes as a function of their distance from the nanotube end. Physical Review B, 72, 245409-1–245409-7.
Dresselhaus, M. S., Dresselhaus, G., & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: Their properties and applications. San Diego: Academic.
Dresselhaus, M. S., Dresselhaus, G., & Avouris, P. (Eds.). (2001). Carbon nanotubes: Synthesis, structure, properties, and applications. Berlin: Springer.
Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Filho, A. G. S., Pimenta, M. A., & Saito, R. (2002). Single nanotube Raman spectroscopy. Accounts of Chemical Research, 35, 1070–1078.
Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409, 47–99.
Dresselhaus, M. S., Dresselhaus, G., & Jorio, A. (2007). Raman spectroscopy of carbon nanotubes in 1997 and 2007. The Journal of Physical Chemistry C, 111, 17887–17893.
Dulap, B. I., & Zope, R. R. (2006). Efficient quantum-chemical geometry optimization and the structure of large icosahedral fullerenes. Chemical Physics Letters, 422, 451–454.
Dunlap, B. I., Brenner, D. W., Mintmire, J. W., Mowrey, R. C., & White, C. T. (1991). Local density functional electronic structures of three stable icosahedral fullerenes. Journal of Physical Chemistry, 95, 8737–8741.
Duplock, E. J., Scheffler, M., & Lindan, P. J. D. (2004). Hallmark of perfect graphene. Physical Review Letters, 92, 225502-1–225502-4.
Eggen, B. R., Heggie, M. I., Jungnickel, G., Latham, C. D., Jones, R., & Briddon, P. R. (1996). Autocatalysis during fullerene growth. Science, 272, 87–89.
Ekinci, K. L., Huang, X. M. H., & Roukes, M. L. (2004). Ultrasensitive nanoelectromechanical mass detection. Applied Physics Letters, 84, 4469–4471.
Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K., & Novoselov, K. S. (2009). Control of graphene’s properties by reversible hydrogenation: Evidence for graphene. Science, 323, 610–613.
Ertekin, E., Chrzan, D. C., & Daw, M. S. (2009). Topological description of the Stone-Wales defect formation energy in carbon nanotubes and graphene. Physical Review B, 79, 155421-1–155421-17.
Esquivel, E. V., & Murr, L. E. (2004). A TEM analysis of nanoparticulates in a polar ice core. Materials Characterization, 52, 15–25.
Feng, X., Irle, S., Witek, H., Morokuma, K., Vidic, R., & Borguet, E. (2005). Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities. Journal of the American Chemical Society, 127, 10533–10538.
Fischer, J. E., Heiney, P. A., McGhie, A. R., Romanow, W. J., Denenstein, A. M., McCauley, J. P., Jr., & Smith, A. B., III. (1991). Compressibility of solid C60. Science, 252, 1288–1290.
Fowler, P. W., & Heine, T. (2001). Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation. Journal of the Chemical Society, Perkin Transactions, 2, 487–490.
Fowler, P. W., & Manolopoulos, D. E. (1995). An atlas of fullerenes. New York: Oxford University Press.
Frisch, M. J. et al. (2003). Gaussian 03, revision E.1. Pittsburg, PA: Gaussian.
Fu, W., Xu, L., Azurmendi, H., Ge, J., Fuhrer, T., Zuo, T., Reid, J., Shu, C., Harich, K., & Dorn, H. C. (2009). 89Y and 13C NMR cluster and carbon cage studies of an yttrium metallofullerene family, Y3N@C2n (n = 40 − 43). Journal of the American Chemical Society, 131, 11762–11769.
Galano, A. (2006). On the influence of diameter and length on the properties of armchair single-walled carbon nanotubes: A theoretical chemistry approach. Chemical Physics, 327, 159–170.
Geim, A. K. (2009). Graphene: Status and prospects. Science, 324, 1530–1534.
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.
Govind, N., Andzelm, J., & Maiti, A. (2008). Dissociation chemistry of gas molecules on carbon nanotubes applications to chemical sensing. IEEE Sensors Journal, 8, 837–841.
Gu, Z., Peng, H., Hauge, R. H., Smalley, R. E., & Margrave, J. L. (2002). Cutting single-wall carbon nanotubes through fluorination. Nano Letters, 2, 1009–1013.
Gueorguiev, G. K., Pacheco, J. M., & Tomanek, D. (2004). Quantum size effects in the polarizability of carbon fullerenes. Physical Review Letters, 92, 215501-1–215501-4.
Guo, T., Diener, M. D., Chai, Y., Alford, M. J., Haufler, R. E., McClure, S. M., Ohno, T., Weaver, J. H., Scuseria, G. E., & Smalley, R. E. (1992). Uranium stabilization of C28: A tetravalent fullerene. Science, 257, 1661–1663.
Haddon, R. C. (1993). Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules. Science, 261, 1545–1550.
Haddon, R. C., & Scott, L. T. (1986). π-Orbital conjugation and rehybridization in bridged annulenes and deformed molecules in general: π-orbital axis vector analysis. Pure and Applied Chemistry, 58, 137–142.
Hamada, N., Sawada, S., & Oshiyama, A. (1992). New one-dimensional conductors: Graphitic microtubules. Physical Review Letters, 68, 1579–1581.
Harutyunyan, A. R., Chen, G., Paronyan, T. M., Pigos, E. M., Kuznetsov, O. A., Hewaparakrama, K., Kim, S. M., Zakharov, D., Stach, E. A., & Sumanasekera, G. U. (2009). Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science, 326, 116–120.
He, H. Y., & Pan, B. C. (2009). Electronic structures and Raman features of a carbon nanobud. The Journal of Physical Chemistry C, 113, 20822–20826.
Heath, J. R. (1991). Synthesis of C60 from small carbon clusters: a model based on experiment and theory. ACS Symposium Series, 481, 1–23.
Helden, G. v., Gotts, N. G., & Bowers, M. T. (1993). Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature, 363, 60–63.
Hernández, E., Ordejón, P., & Terrones, H. (2001). Fullerene growth and the role of nonclassical isomers. Physical Review B, 63, 193403-1–193403-4.
Heymann, D., Chibante, L. P. F., Brooks, R. R., Wolbach, W. S., & Smalley, R. E. (1994). Fullerenes in the cretaceous-tertiary boundary layer. Science, 265, 645–647.
Heymann, D., Jenneskens, L. W., Jehlička, J., Koper, C., & Vlietstra, E. (2003). Terrestrial and extraterrestrial fullerenes. Fullerenes, Nanotubes, and Carbon Nanostructures, 11, 333–370.
Hirahara, K., Suenaga, K., Bandow, S., Kato, H., Okazaki, T., Shinohara, H., & Iijima, S. (2000). One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Physical Review Letters, 85, 5384–5387.
Hirsch, A. (2002). Functionalization of single-walled carbon nanotubes. Angewandte Chemie, International Edition, 41, 1853–1859.
Howard, J. B., Mckinnon, J. T., Makarovsky, Y., Lafleur, A. L., & Johnson, M. E. (1991). Fullerenes C60 and C70 in flames. Nature, 352, 139–141.
Hu, Y. H., & Ruckenstein, E. (2003). Ab initio quantum chemical calculations for fullerene cages with large holes. Journal of Chemical Physics, 119, 10073–10080.
Hu, Y. H., & Ruckenstein, E. (2004). Quantum chemical density-functional theory calculations of the structures of defect C60 with four vacancies. Journal of Chemical Physics, 120, 7971–7975.
Hudhomme, P., & Cousseau, J. (2007). Plastic solar cells using fullerene derivatives in the photoactive layer. In F. Langa & J.-F. Nierengarten (Eds.), Fullerenes: Principles and applications. London: Royal Society of Chemistry.
Hutter, J., et al. Computer code CPMD, version 3.11 (The CPMD program is © 2000–2016 jointly by IBM Corp. and by Max Planck Institute, Stuttgart.), http://www.cpmd.org/.
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.
Iijima, S. (2007). A career in carbon. Nature Nanotechnology, 2, 590–591.
Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603–605.
Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., & Takahashi, K. (1999). Nano-aggregates of single-walled graphitic carbon nano-horns. Chemical Physics Letters, 309, 165–170.
Ioffe, I. N., Goryunkov, A. A., Tamm, N. B., Sidorov, L. N., Kemnitz, E., & Troyanov, S. I. (2009). Fusing pentagons in a fullerene cage by chlorination: IPR D 2 -C76 Rearranges into non-IPR C76Cl24. Angewandte Chemie, International Edition, 48, 5904–5907.
Jia, T.-T., Zheng, M.-M., Fan, X.-Y., Su, Y., Li, S.-J., Liu, H.-Y., Chen, G., & Kawazoe, Y. (2016). Dirac cone move and bandgap on/off switching of graphene superlattice. Scientific Reports, 6, 18869.
Jiang, H., Nasibulin, A. G., Brown, D. P., & Kauppinen, E. I. (2007). Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon, 45, 662–667.
Jiang, D., Cooper, V. R., & Dai, S. (2009). Porous graphene as the ultimate membrane for gas separation. Nano Letters, 9, 4019–4024.
Kaczmarek, A., Dinadayalane, T. C., Łukaszewicz, J., & Leszczynski, J. (2007). Effect of tube length on the chemisorptions of one and two hydrogen atoms on the sidewalls of (3,3) and (4,4) single-walled carbon nanotubes: A theoretical study. International Journal of Quantum Chemistry, 107, 2211–2219.
Kadish, K. M., & Ruoff, R. S. (Eds.). (2002). Fullerene: Chemistry physics and technology. New York: Wiley.
Kar, T., Bettinger, H. F., Scheiner, S., & Roy, A. K. (2008). Noncovalent π − π stacking and CH-π interactions of aromatics on the surface of single-wall carbon nanotubes: An MP2 study. The Journal of Physical Chemistry C, 112, 20070–20075.
Karousis, N., Papi, R. M., Siskos, A., Vakalopoulou, P., Glezakos, P., Sarigiannis, Y., Stavropoulos, G., Kyriakidis, D. A., & Tagmatarchis, N. (2009). Peptidomimetic–functionalized carbon nanotubes with antitrypsin activity. Carbon, 47, 3550–3558.
Kessler, B., Bringer, A., Cramm, S., Schlebusch, C., Eberhardt, W., Suzuki, S., Achiba, Y., Esch, F., Barnaba, M., & Cocco, D. (1997). Evidence for incomplete charge transfer and La-derived states in the valence bands of endohedrally doped La@C82. Physical Review Letters, 79, 2289–2292.
Kikuchi, K., Nakahara, N., Wakabayashi, T., Suzuki, S., Shiromaru, H., Miyake, Y., Saito, K., Ikemoto, I., Kainosho, M., & Achiba, Y. (1992a). NMR characterization of isomers of C78, C82 and C84 fullerenes. Nature, 357, 142–145.
Kikuchi, K., Nakahara, N., Wakabayashi, T., Honda, M., Matsumiya, H., Moriwaki, T., Suzuki, S., Shiromaru, H., Saito, K., Yamauchi, K., Ikemoto, I., & Achiba, Y. (1992b). Isolation and identification of fullerene family: C76, C78, C82, C84, C90 and C96. Chemical Physics Letters, 188, 177–180.
Kimura, T., Sugai, T., Shinohara, H., Goto, T., Tohji, K., & Matsuoka, I. (1995). Preferential arc-discharge production of higher fullerenes. Chemical Physics Letters, 246, 571–576.
Klein, D. J., & Schmalz, T. G. (1990). In I. Hargittai (Ed.), Quasicrystals, networks, and molecules of fivefold symmetry (p. 239). New York: VCH.
Knobel, R. G., & Cleland, A. N. (2003). Nanometre-scale displacement sensing using a single electron Transistor. Nature, 424, 291–293.
Kostov, M. K., Santiso, E. E., George, A. M., Gubbins, K. E., & Nardelli, M. B. (2005). Dissociation of water on defective carbon substrates. Physical Review Letters, 95, 136105-1–136105-4.
Krätschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: A new form of carbon. Nature, 347, 354–358.
Kresse, G., & Furthmuller, J. (1996a). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169–11186.
Kresse, G., & Furthmuller, J. (1996b). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15–50.
Kroto, H. W. (1987). The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature, 329, 529–531.
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). Buckminsterfullerene. Nature, 318, 162–163.
Kubozono, Y., Maeda, H., Takabayashi, Y., Hiraoka, K., Nakai, T., Kashino, S., Emura, S., Ukita, S., & Sogabe, T. (1996). Extractions of Y@C60, Ba@C60, La@C60, Ce@C60, Pr@C60, Nd@C60, and Gd@C60 with aniline. Journal of the American Chemical Society, 118, 6998–6999.
Launois, P., Chorro, M., Verberck, B., Albouy, P.-A., Rouziere, S., Colson, D., Foget, A., Noe, L., Kataura, H., Monthioux, M., & Cambedouzou, J. (2010). Transformation of C70 peapods into double walled carbon nanotubes. Carbon, 48, 89–98.
Lavrik, N. V., & Datskos, P. G. (2003). Femtogram mass detection using photothermally actuated nanomechanical resonators. Applied Physics Letters, 82, 2697–2699.
Lebedeva, M. A., Chamberlain, T. W., & Khlobystov, A. N. (2015). Harnessing the synergistic and complementary properties of fullerene and transition-metal compounds for nanomaterial applications. Chemical Reviews, 115, 11301–11351.
Lee, S. U., & Han, Y.-K. (2004). Structure and stability of the defect fullerene clusters of C60: C59, C58, and C57. Journal of Chemical Physics, 121, 3941–3942.
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789.
Lee, C., Kim, D., Jurecka, P., Tarakeshwar, P., Hobza, P., & Kim, K. S. (2007). Understanding of assembly phenomena by aromatic − aromatic interactions: Benzene dimer and the substituted systems. The Journal of Physical Chemistry. A, 111, 3446–3457.
Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science, 321, 385–388.
Lherbier, A., Blase, X., Niquet, Y. M., Triozon, N., & Roche, S. (2008). Charge transport in chemically doped 2D graphene. Physical Review Letters, 101, 036808-1–036808-4.
Li, L., Reich, S., & Robertson, J. (2005). Defect energies of graphite: Density-functional calculations. Physical Review B, 72, 184109-1–184109-10.
Li, J., Wu, C., & Guan, L. (2009a). Lithium insertion/extraction properties of nanocarbon materials. The Journal of Physical Chemistry C, 113, 18431–18435.
Li, Y., Zhou, Z., Shen, P., & Chen, Z. (2009b). Structural and electronic properties of graphane nanoribbons. The Journal of Physical Chemistry, 113, 15043–15045.
Li, Y., Liu, S., Datta, D., & Li, Z. (2015). Surface hydrogenation regulated wrinkling and torque capability of hydrogenated graphene annulus under circular shearing. Scientific Reports, 5, 16556.
Liu, J., Dai, H., Hafner, J. H., Colbert, D. T., Smalley, R. E., Tans, S. J., & Dekker, C. (1997). Fullerene ‘crop circles’. Nature, 385, 780–781.
Liu, Z., Sun, X., Nakayama-Ratchford, N., & Dai, H. (2007). Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 1, 50–56.
Lopez-Urias, F., Terrones, M., & Terrones, H. (2003). Electronic properties of giant fullerenes and complex graphitic nanostructures with novel morphologies. Chemical Physics Letters, 381, 683–690.
Lu, X., & Chen, Z. (2005). Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. Chemical Reviews, 105, 3643–3696.
Lu, A. J., & Pan, B. C. (2004). Nature of single vacancy in achiral carbon nanotubes. Physical Review Letters, 92, 105504-1–105504-4.
Lu, J., Zhang, X., & Zhao, X. (2000). Metal-cage hybridization in endohedral La@C60, Y@C60 and Sc@C60. Chemical Physics Letters, 332, 51–57.
Lu, X., Chen, Z., Thiel, W., von Rague Schleyer, P., Huang, R., & Zheng, L. (2004). Properties of fullerene[50] and D 5h decachlorofullerene[50]: A computational study. Journal of the American Chemical Society, 126, 14871–14878.
Lu, X., Chen, Z., & von Rague Schleyer, P. (2005). Are Stone − Wales defect sites always more reactive than perfect sites in the sidewalls of single-wall carbon nanotubes? Journal of the American Chemical Society, 127, 20–21.
Lu, J., Yuan, D., Liu, J., Leng, W., & Kopley, T. E. (2008). Three dimensional single-walled carbon nanotubes. Nano Letters, 8, 3325–3329.
Ma, J., Alfe, D., Michaelides, A., & Wang, E. (2009). Stone-Wales defects in graphene and other planar sp2-bonded materials. Physical Review B, 80, 033407-1–033407-4.
MacKenzie, K. J., See, C. H., Dunens, O. M., & Harris, A. T. (2008). Do single-walled carbon nanotubes occur naturally? Nature Nanotechnology, 3, 310.
Malyi, O. I., Sopiha, K., Kulish, V. V., Tan, T. L., Manzhos, S., & Persson, C. (2015). A computational study of Na behavior on graphene. Applied Surface Science, 333, 235–243.
Manolopoulos, D. E., & Fowler, P. W. (1991). Structural proposals for endohedral metal-fullerene Complexes. Chemical Physics Letters, 187, 1–7.
Manolopoulos, D. E., & Fowler, P. W. (1992). Molecular graphs, point groups, and fullerenes. Journal of Chemical Physics, 96, 7603–7614.
Maruyama, S., & Yamaguch, Y. (1998). A molecular dynamics demonstration of annealing to a perfect C60 Structure. Chemical Physics Letters, 286, 343–349.
Maseras, F., & Morokuma, K. (1995). IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states. Journal of Computational Chemistry, 16, 1170–1179.
Mashino, T., Nishikawa, D., Takahashi, K., Usui, N., Yamori, T., Seki, M., Endo, T., & Mochizuki, M. (2003). Antibacterial and antiproliferative activity of cationic fullerene derivatives. Bioorganic and Medicinal Chemistry Letters, 13, 4395–4397.
Matsuo, Y., Tahara, K., & Nakamura, E. (2003). Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes. Organic Letters, 5, 3181–3184.
McKenzie, D. R., Davis, C. A., Cockayne, D. J. H., Muller, D. A., & Vassallo, A. M. (1992). The structure of the C70 molecule. Nature, 355, 622–624.
Mehta, G., & Rao, H. S. P. (1998). Synthetic studies directed towards bucky-balls and bucky-bowls. Tetrahedron, 54, 13325–13370.
Mehta, G., Panda, G., Yadav, R. D., & Kumar, K. R. (1997). A synthetic approach towards Pinakene, a C28H14 fragment of [70]-fullerene. Indian Journal of Chemistry Section B, 36, 301–302.
Melin, F., Chaur, M. N., Engmann, S., Elliott, B., Kumbhar, A., Athans, A. J., & Echegoyen, L. (2007). The large Nd3N@C2n (40 ≤ n ≤ 49) cluster fullerene family: Preferential templating of a C88 cage by a trimetallic nitride cluster. Angewandte Chemie, International Edition, 46, 9032–9035.
Menon, M., & Srivastava, D. (1997). Carbon nanotube T junctions: Nanoscale metal-semiconductor-metal contact devices. Physical Review Letters, 79, 4453–4456.
Meyer, J. C., Kisielowski, C., Erni, R., Rossell, M. D., Crommine, M. F., & Zettl, A. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 8, 3582–3586.
Mielke, S. L., Troya, D., Zhang, S., Li, J.-L., Xiao, S., Car, R., Ruoff, R. S., Schatz, G. C., & Belytschko, T. (2004). The role of vacancy defects and holes in the fracture of carbon nanotubes. Chemical Physics Letters, 390, 413–420.
Mintmire, J. W., Dunlap, B. I., & White, C. T. (1992). Are fullerene tubules metallic? Physical Review Letters, 68, 631–634.
Miwa, R. H., Martins, T. B., & Fazzio, A. (2008). Hydrogen adsorption on boron doped graphene: An ab initio study. Nanotechnology, 19, 155708-1–155708-7.
Miyake, Y., Minami, T., Kikuchi, K., Kainosho, M., & Achiba, Y. (2000). Trends in structure and growth of higher fullerenes isomer structure of C86 and C88 −. Molecular Crystals and Liquid Crystals, 340, 553–558.
Miyamoto, Y., Rubio, A., Berber, S., Yoon, M., & Tomanek, D. (2004). Spectroscopic characterization of Stone-Wales defects in nanotubes. Physical Review B, 69, 121413-1–121413-4.
Mizorogi, N., & Aihara, J. (2003). PM3 localization energies for the isolated-pentagon isomers of the C84 Fullerene. Physical Chemistry Chemical Physics, 5, 3368–3371.
Monthioux, M., & Kuznetsov, V. L. (2006). Who should be given the credit for the discovery of carbon nanotubes? Carbon, 44, 1621–1623.
Moothi, K., Simate, G. S., Falcon, R., Iyuke, S. E., & Meyyappan, M. (2015). Carbon nanotube synthesis using coal pyrolysis. Langmuir, 31, 9464–9472.
Moro, L., Ruoff, R. S., Becker, C. H., Lorents, D. C., & Malhotra, R. (1993). Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry. Journal of Physical Chemistry, 97, 6801–6805.
Morokuma, K., Wang, Q., & Vreven, T. (2006). Performance evaluation of the three-layer ONIOM method: Case study for a zwitterionic peptide. Journal of Chemical Theory and Computation, 2, 1317–1324.
Murry, R. L., Strout, D. L., Odom, G. K., & Scuseria, G. E. (1993). Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation. Nature, 366, 665–667.
Nasibulin, A. G., Pikhitsa, P. V., Jiang, H., Brown, D. P., Krasheninnikov, A. V., Anisimov, A. S., Queipo, P., Moisala, A., Gonzalez, D., Lientschnig, G., Hassanien, A., Shandakov, S. D., Lolli, G., Resasco, D. E., Choi, M., Tomanek, D., & Kauppinen, E. I. (2007a). A novel hybrid carbon material. Nature Nanotechnology, 2, 156–161.
Nasibulin, A. G., Anisimov, A. S., Pikhitsa, P. V., Jiang, H., Brown, D. P., Choi, M., & Kauppinen, E. I. (2007b). Investigations of nanobud formation. Chemical Physics Letters, 446, 109–114.
Neto, A. H. C. (2010). The carbon new age. Materials Today, 13(3), 12–17.
Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81, 109–162.
Nikitin, A., Ogasawara, H., Mann, D., Denecke, R., Zhang, Z., Dai, H., Cho, K., & Nilsson, A. (2005). Hydrogenation of single-walled carbon nanotubes. Physical Review Letters, 95, 225507-1–225507-1.
Nishidate, K., & Hasegawa, M. (2005). Energetics of lithium ion adsorption on defective carbon nanotubes. Physical Review B, 71, 245418-1–245418-6.
Niyogi, S., Hamon, M. A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M. E., & Haddon, R. C. (2002). Chemistry of single-walled carbon nanotubes. Accounts of Chemical Research, 35, 1105–1113.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005a). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United State of America, 102, 10451–10453.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005b). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197–200.
Oberlin, A., Endo, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene Decomposition. Journal of Crystal Growth, 32, 335–349.
O’Brien, S. C., Heath, J. R., Curl, R. F., & Smalley, R. E. (1988). Photophysics of buckminsterfullerene and other carbon cluster ions. Journal of Chemical Physics, 88, 220–230.
Okada, S. (2007). Radial-breathing mode frequencies for nanotubes encapsulating fullerenes. Chemical Physics Letters, 438, 59–62.
Okada, S., & Saito, S. (1996). Number of extractable fullerene isomers and speciality of C84. Chemical Physical Letters, 252, 94–100.
Ormsby, J. L., & King, B. T. (2007). The regioselectivity of addition to carbon nanotube segments. Journal of Organic Chemistry, 72, 4035–4038.
Osawa, E. (1970). Superaromaticity. Kagaku (Kyoto), 25, 854–863.
Osuna, S., Morera, J., Cases, M., Morokuma, K., & Sola, M. (2009). Diels − Alder reaction between cyclopentadiene and C60: An analysis of the performance of the ONIOM method for the study of chemical reactivity in fullerenes and nanotubes. The Journal of Physical Chemistry. A, 113, 9721–9726.
Ouyang, M., Huang, J.-L., & Lieber, C. M. (2002). Fundamental electronic properties and applications of single-walled carbon nanotubes. Accounts of Chemical Research, 35, 1018–1025.
Palkar, A., Kumbhar, A., Athans, A. J., & Echegoyen, L. (2008). Pyridyl-functionalized and water-soluble carbon nano onions: First supramolecular complexes of carbon nano onions. Chemistry of Materials, 20, 1685–1687.
Park, S., Srivastava, D., & Cho, K. (2003). Generalized chemical reactivity of curved surfaces: Carbon Nanotubes. Nano Letters, 3, 1273–1277.
Park, S. S., Liu, D., & Hagelberg, F. (2005). Comparative investigation on non-IPR C68 and IPR C78 fullerenes encaging Sc3N molecules. The Journal of Physical Chemistry. A, 109, 8865–8873.
Peng, X., Komatsu, N., Bhattacharya, S., Shimawaki, T., Aonuma, S., Kimura, T., & Osuka, A. (2007). Optically active single-walled carbon nanotubes. Nature Nanotechnology, 2, 361–365.
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.
Pereira, V. M., Neto, A. H. C., & Peres, N. M. R. (2009). Tight-binding approach to uniaxial strain in graphene. Physical Review B, 80, 045401-1–045401-8.
Pierson, H. O. (1993). Handbook of carbon, graphite, diamonds and fullerenes: Processing, properties and applications. New Jersey: Noyes.
Piskoti, C., Yarger, J., & Zettl, A. (1998). C36, a new carbon solid. Nature, 393, 771–774.
Ponomarenko, L. A., Schedin, F., Katsnelson, M. I., Yang, R., Hill, E. W., Novoselov, K. S., & Geim, A. K. (2008). Chaotic Dirac billiard in graphene quantum dots. Science, 320, 356–358.
Poonjarernsilp, C., Sano, N., Tamon, H., & Charinpanitkul, T. (2009). A model of reaction field in gas- injected arc-in-water method to synthesize single-walled carbon nanohorns: Influence of water temperature. Journal of Applied Physics, 106, 104315-1–104315-7.
Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Worth, J., Scott, L. T., Gelmont, M., Olevano, D., & Issendorff, B. v. (2000). Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature, 407, 60–63.
Priyakumar, U. D., & Sastry, G. N. (2001a). Heterobuckybowls: A theoretical study on the structure, bowl- to-bowl inversion barrier, bond length alternation, structure-inversion barrier relationship, stability, and synthetic feasibility. Journal of Organic Chemistry, 66, 6523–6530.
Priyakumar, U. D., & Sastry, G. N. (2001b). Tailoring the curvature, bowl rigidity and stability of heterobuckybowls: Theoretical design of synthetic strategies towards heterosumanenes. Journal of Molecular Graphics and Modelling, 19, 266–269.
Priyakumar, U. D., & Sastry, G. N. (2001c). Theory provides a clue to accomplish the synthesis of sumanene, C21H12, the prototypical C3v-buckybowl. Tetrahedron Letters, 42, 1379–1381.
Qin, L.-C. (2007). Determination of the chiral indices (n, m) of carbon nanotubes by electron diffraction. Physical Chemistry Chemical Physics, 9, 31–48.
Radushkevich, L. V., & Lukyanovich, V. M. (1952). O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn Fisic Chim, 26, 88–95.
Rao, C. N. R., Voggu, R., & Govindaraj, A. (2009a). Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. Nanoscale, 1, 96–105.
Rao, F., Li, T., & Wang, Y. (2009b). Growth of all-carbon single-walled carbon nanotubes from diamonds and Fullerenes. Carbon, 47, 3580–3584.
Robertson, D. H., Brenner, D. W., & Mintmire, J. W. (1992). Energetics of nanoscale graphitic tubules. Physical Review B, 45, 12592–12595.
Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L., & Perkins, F. K. (2006). Role of defects in single-walled carbon nanotube chemical sensors. Nano Letters, 6, 1747–1751.
Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z., & Sheehan, P. E. (2008). Reduced graphene oxide molecular sensors. Nano Letters, 8, 3137–3140.
Rohlfing, E. A., Cox, D. M., & Kaldor, A. (1994). Production and characterization of supersonic carbon cluster Beams. Journal of Chemical Physics, 81, 3322–3330.
Rojas, A., Martínez, M., Amador, P., & Torres, L. A. (2007). Increasing stability of the fullerenes with the number of carbon atoms: The experimental evidence. The Journal of Physical Chemistry B, 111, 9031–9035.
Saito, M., & Miyamoto, Y. (2001). Theoretical identification of the smallest fullerene, C20. Physical Review Letters, 87, 035503-1–035503-4.
Saito, R., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. (1992). Electronic structure of chiral graphene tubules. Applied Physics Letters, 60, 2204–2206.
Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (1998). Physical properties of carbon nanotubes. London: Imperial College Press.
Sakurai, H., Daiko, T., & Hirao, T. (2003). A synthesis of sumanene, a fullerene fragment. Science, 301, 1878.
Sano, M., Kamino, A., Okamura, J., & Shinkai, S. (2001). Ring closure of carbon nanotubes. Science, 293, 1299–1301.
Sastry, G. N., & Priyakumar, U. D. (2001). The role of heteroatom substitution in the rigidity and curvature of buckybowls. A theoretical study. Journal of the Chemical Society, Perkin Transactions, 2, 30–40.
Sastry, G. N., Jemmis, E. D., Mehta, G., & Shah, S. R. (1993). Synthetic strategies towards C60. Molecular mechanics and MNDO study on sumanene and related structures. Journal of the Chemical Society, Perkin Transactions, 2, 1867–1871.
Sastry, G. N., Rao, H. S. P., Bednarek, P., & Priyakumar, U. D. (2000). Effect of substitution on the curvature and bowl-to-bowl inversion barrier of bucky-bowls. Study of mono-substituted corannulenes (C19XH10, X = B–, N+, P+ and Si). Chemical Communications, 843–844.
Saunders, M., Jiménez-Vázquez, H. A., Cross, R. J., & Poreda, R. J. (1993). Stable compounds of helium and neon: He@C60 and Ne@C60. Science, 259, 1428–1430.
Scheina, S., & Friedrich, T. (2008). A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices. Proceeding of the National Academy of Sciences of the United States of America, 105, 19142–19147.
Scott, L. T., Boorum, M. M., McMahon, B. J., Hagen, S., Mack, J., Blank, J., Wegner, H., & de Meijere, A. (2002). A rational chemical synthesis of C60. Science, 295, 1500–1503.
Scuseria, G. E. (1996). Ab initio calculations of fullerenes. Science, 271, 942–945.
Seiders, T. J., Elliot, E. L., Grube, G. H., & Siegel, J. S. (1999). Synthesis of corannulene and alkyl derivatives of corannulene. Journal of the American Chemical Society, 121, 7804–7813.
Seiders, T. J., Baldridge, K. K., Grube, G. H., & Siegel, J. S. (2001). Structure/energy correlation of bowl depth and inversion barrier in corannulene derivatives: Combined experimental and quantum mechanical analysis. Journal of the American Chemical Society, 123, 517–525.
Serra, S., Cavazzoni, C., Chiarotti, G. L., Scandolo, S., & Tosatti, E. (1999). Pressure-induced solid carbonates from molecular CO2 by computer simulation. Science, 284, 788–790.
Shao, N., Gao, Y., Yoo, S., An, W., & Zeng, X. C. (2006). Search for lowest-energy fullerenes: C98 to C110. The Journal of Physical Chemistry. A, 110, 7672–7676.
Shao, N., Gao, Y., & Zeng, X. C. (2007). Search for lowest-energy fullerenes 2: C38 to C80 and C112 to C120. The Journal of Physical Chemistry C, 111, 17671–17677.
Shukla, M. K., & Leszczynski, J. (2009). Fullerene (C60) forms stable complex with nucleic acid base guanine. Chemical Physics Letters, 469, 207–209.
Shustova, N. B., Kuvychko, I. V., Bolskar, R. D., Seppelt, K., Strauss, S. H., Popov, A. A., & Boltalina, O. V. (2006). Trifluoromethyl derivatives of insoluble small-HOMO − LUMO-Gap hollow higher fullerenes. NMR and DFT structure elucidation of C 2 -(C74-D 3h )(CF3)12, C s -(C76-T d (2))(CF3)12, C 2 -(C78-D 3h (5))(CF3)12, C s -(C80-C 2v (5))(CF3)12, and C 2 -(C82-C 2 (5))(CF3)12. Journal of the American Chemical Society, 128, 15793–15798.
Shustova, N. B., Newell, B. S., Miller, S. M., Anderson, O. P., Bolskar, R. D., Seppelt, K., Popov, A. A., Boltalina, O. V., & Strauss, S. H. (2007). Discovering and verifying elusive fullerene cage isomers: Structures of C 2 -p 11-(C74-D 3h )(CF3)12 and C 2 -p 11-(C78-D 3h (5))(CF3)12. Angewandte Chemie, International Edition, 46, 4111–4114.
Simeon, T. M., Yanov, I., & Leszczynski, J. (2005). Ab initio quantum chemical studies of fullerene molecules with substitutes C59X [X = Si, Ge, Sn], C59X- [X = B, Al, Ga, In], and C59X [X = N, P, As, Sb]. International Journal of Quantum Chemistry, 105, 429–436.
Sinha, N., & Yeow, J. T.-W. (2005). Carbon nanotubes for biomedical applications. IEEE Transactions on Nano Bioscience, 4, 180–195.
Sinnokrot, M. O., & Sherrill, C. D. (2004). Highly accurate coupled cluster potential energy curves for the benzene dimer: Sandwich, T-shaped, and parallel-displaced configurations. The Journal of Physical Chemistry. A, 108, 10200–10207.
Slanina, Z., Zhao, X., Lee, S.-L., & Osawa, E. (1997). C90 temperature effects on relative stabilities of the IPR Isomers. Chemical Physics, 219, 193–200.
Slanina, Z., Uhlik, F., Yoshida, M., & Osawa, E. (2000a). A computational treatment of 35 IPR isomers of C88. Fullerene Science and Technology, 8, 417–432.
Slanina, Z., Zhao, X., Deota, P., & Osawa, E. (2000b). Relative stabilities of C92 IPR fullerenes. Journal of Molecular Modeling, 6, 312–317.
Smalley, R. E. (1992). Self-assembly of the fullerenes. Accounts of Chemical Research, 25, 98–105.
Smith, B. W., Monthioux, M., & Luzzi, D. E. (1998). Encapsulated C60 in carbon nanotubes. Nature, 396, 323–324.
Smith, B. W., Monthioux, M., & Luzzi, D. E. (1999). Carbon nanotube encapsulated fullerenes: A unique class of hybrid materials. Chemical Physics Letters, 315, 31–36.
Sofo, J. O., Chaudhari, A. S., & Barber, G. D. (2007). Graphane: A two-dimensional hydrocarbon. Physical Review B, 75, 153401-1–153401-4.
Sotiropoulou, S., & Chaniotakis, N. A. (2003). Carbon nanotube array-based biosensor. Analytical and Bioanalytical Chemistry, 375, 103–105.
Stevens, R. M. D., Frederick, N. A., Smith, B. L., Morse, D. E., Stucky, G. D., & Hansma, P. K. (2000). Carbon nanotubes as probes for atomic force microscopy. Nanotechnology, 11, 1–5.
Stevens, R. M. D., Nguyen, C. V., & Meyyappan, M. (2004). Carbon nanotube scanning probe for imaging in aqueous environment. IEEE Transactions on Nano Bioscience, 3, 56–60.
Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods I Method. Journal of Computational Chemistry, 10, 209–220.
Stoilova, O., Jérôme, C., Detrembleur, C., Mouithys-Mickalad, A., Manolova, N., Rashkova, I., & Jérôme, R. (2007). C60-containing nanostructured polymeric materials with potential biomedical applications. Polymer, 48, 1835–1843.
Stone, A. J., & Wales, D. J. (1986). Theoretical studies of icosahedral C60 and some related species. Chemical Physics Letters, 128, 501–503.
Strano, M. S. (2003). Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. Journal of the American Chemical Society, 125, 16148–16153.
Strano, M. S. (2007). Carbon nanotubes: Sorting out left from right. Nature Nanotechnology, 2, 340–341.
Suchanek, W. L., Libera, J. A., Gogotsi, Y., & Yoshimura, M. (2001). Behavior of C60 under hydrothermal conditions: Transformation to amorphous carbon and formation of carbon nanotubes. Journal of Solid State Chemistry, 160, 184–188.
Suenaga, K., Wakabayashi, H., Koshino, M., Sato, Y., Urita, K., & Iijima, S. (2007). Imaging active topological defects in carbon nanotubes. Nature Nanotechnology, 2, 358–360.
Sulman, E., Yanov, I., & Leszczynski, J. (1999). An active site model and the catalytic activity mechanism of the new fullerene-based catalyst - (η 2-C60)Pd(PPh3)2. Fullerenes, Nanotubes, and Carbon Nanostructures, 7, 467–484.
Sun, G. (2003). Assigning the major isomers of fullerene C88 by theoretical 13C NMR spectra. Chemical Physics Letters, 367, 26–33.
Sun, G., & Kertesz, M. (2002). 13C NMR spectra for IPR isomers of fullerene C86. Chemical Physics, 276, 107–114.
Suzuki, S., & Kobayashi, Y. (2007). Healing of low-energy irradiation-induced defects in single-walled carbon nanotubes at room temperature. The Journal of Physical Chemistry C, 111, 4524–4528.
Sygula, A., & Rabideau, P. W. (1999). Non-pyrolytic syntheses of buckybowls: Corannulene, cyclopentacorannulene, and a semibuckminsterfullerene. Journal of the American Chemical Society, 121, 7800–7803.
Tagmatarchis, N., Arcon, D., Prato, M., & Shinohara, H. (2002). Production, isolation and structural characterization of [92]fullerene isomers. Chemical Communications, 2992–2993.
Tang, A. C., & Huang, F. Q. (1995). Electronic structures of giant fullerenes with I h symmetry. Physical Review B, 51, 13830–13832.
Tang, A. C., Li, Q. S., Liu, C. W., & Li, J. (1993). Symmetrical clusters of carbon and boron. Chemical Physics Letters, 201, 465–469.
Taylor, R. (1992). The third form of carbon: A new era in chemistry. Interdisciplinary Science Reviews, 17, 161–170.
Taylor, R., Hare, J. P., Abdul-Sada, A. K., & Kroto, H. W. (1990). Isolation, separation and characterisation of the fullerenes C60 and C70: The third form of carbon. Journal of the Chemical Society, Chemical Communications, 1423–1425.
Taylor, R., Langley, G. J., Dennis, T. J. S., Kroto, H. W., & Walton, D. R. M. (1992). A mass spectrometric–NMR study of fullerene-78 isomers. Journal of the Chemical Society, Chemical Communications, 1043–1046.
Taylor, R., Langley, G. J., Avent, A. G., Dennis, T. J. S., Kroto, H. W., & Walton, D. R. M. (1993). 13C NMR spectroscopy of C76, C78, C84 and mixtures of C86–C102; Anomalous chromatographic behaviour of C82, and evidence for C70H12. Journal of the Chemical Society, Perkin Transactions, 2, 1029–1036.
Terrones, M., Terrones, G., & Terrones, H. (2002). Structure, chirality, and formation of giant icosahedral fullerenes and spherical graphitic onions. Structural Chemistry, 13, 373–384.
Thilgen, C., & Diederich, F. (2006). Structural aspects of fullerene chemistry – A journey through fullerene chirality. Chemical Reviews, 106, 5049–5135.
Thrash, T. P., Cagle, D. W., Alford, J. M., Wright, K., Ehrhardt, G. J., Mirzadeh, S., & Wilson, L. J. (1999). Toward fullerene-based radiopharmaceuticals: High-yield neutron activation of endohedral 165Ho metallofullerenes. Chemical Physics Letters, 308, 329–336.
Troshin, P. A., Avent, A. G., Darwish, A. D., Martsinovich, N., Abdul-Sada, A. K., Street, J. M., & Taylor, R. (2005). Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18. Science, 309, 278–281.
Troyanov, S. I., & Tamm, N. B. (2009). Cage connectivities of C88 (33) and C92 (82) fullerenes captured as trifluoromethyl derivatives, C88(CF3)18 and C92(CF3)16. Chemical Communications, 6035–6037.
Valsakumar, M. C., Subramanian, N., Yousuf, M., Sahu, P. C., Hariharan, Y., Bharathi, A., Sastry, V. S., Janaki, J., Rao, G. V. N., Radhakrishnan, T. S., & Sundar, C. S. (1993). Crystal structure and disorder in solid C70. Physical Review B, 48, 9080–9085.
Velasco-Santos, C., Martínez-Hernández, A. L., Consultchi, A., Rodríguez, R., & Castaño, V. M. (2003). Naturally produced carbon nanotubes. Chemical Physics Letters, 373, 272–276.
Vostrowsky, O., & Hirsch, A. (2004). Molecular peapods as supramolecular carbon allotropes. Angewandte Chemie, International Edition, 43, 2326–2329.
Wahl, F., Worth, J., & Prinzbach, H. (1993). The pagodane route to dodecahedranes: An improved approach to the C20H20 parent framework; partial and total functionalizations – Does C20-fullerene exist? Angewandte Chemie International Edition in English, 32, 1722–1726.
Wanbayor, R., & Ruangpornvisuti, V. (2008). Theoretical study of adsorption of C1–C3 alkoxides on various cap-ended and open-ended armchair (5,5) single-walled carbon nanotubes. Carbon, 46, 12–18.
Wang, G.-W., Zhang, X.-H., Zhan, H., Guo, Q.-X., & Wu, Y.-D. (2003). Accurate calculation, prediction, and assignment of 3He NMR chemical shifts of Helium-3-encapsulated fullerenes and fullerene derivatives. Journal of Organic Chemistry, 68, 6732–6738.
Wang, C., Zhou, G., Liu, H., Wu, J., Qiu, Y., Gu, B.-L., & Duan, W. (2006). Chemical functionalization of carbon nanotubes by carboxyl groups on Stone-Wales defects: A density functional theory study. The Journal of Physical Chemistry. B, 110, 10266–10271.
Wang, X., Tabakman, S. M., & Dai, H. (2008). Atomic layer deposition of metal oxides on pristine and functionalized grapheme. Journal of the American Chemical Society, 130, 8152–8153.
Wang, L., Drahushuk, L. W., Cantley, L., Koenig, S. P., Liu, X., Pellegrino, J., Strano, M. S., & Bunch, J. S. (2015a). Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nature Nanotechnology, 10, 785–790.
Wang, Y., Díaz-Tendero, S., Manuel Alcamí, M., & Martín, F. (2015b). Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers. Nature Chemistry, 7, 927–934.
WenXing, B., ChangChun, Z., & WanZhao, C. (2004). Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Physica B, 352, 156–163.
Wikipedia – http://en.wikipedia.org/wiki/Carbon.
Woodward, R. B., & Hoffmann, R. (1969). The conservation of orbital symmetry. Angewandte Chemie (International Edition in English), 8, 781–853.
Wu, J., & Hagelberg, F. (2008). Computational study on C80 enclosing mixed trimetallic nitride clusters of the form GdxM3-xN (M = Sc, Sm, Lu). The Journal of Physical Chemistry C, 112, 5770–5777.
Wu, Y.-T., & Siegel, J. S. (2006). Aromatic molecular-bowl hydrocarbons: Synthetic derivatives, their structures, and physical properties. Chemical Reviews, 106, 4843–4867.
Wu, X., & Zeng, X. C. (2009). Periodic graphene nanobuds. Nano Letters, 9, 250–256.
Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of grapheme. Nature Nanotechnology, 4, 505–509.
Xie, S.-Y., Gao, F., Lu, X., Huang, R.-B., Wang, C.-R., Zhang, X., Liu, M.-L., Deng, S.-L., & Zheng, L.-S. (2004). Capturing the labile fullerene[50] as C50Cl10. Science, 304, 699.
Xue, Y., Ding, Y., Niu, J., Xia, Z., Roy, A., Chen, H., Qu, J., Wang, Z. L., & Dai, L. (2015). Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Science Advances, 1, 1400198.
Yakobson, B. I., Brabec, C. J., & Bernholc, J. (1996). Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 76, 2511–2514.
Yamada, M., Nakahodo, T., Wakahara, T., Tsuchiya, T., Maeda, Y., Akasaka, T., Kako, M., Yoza, K., Horn, E., Mizorogi, N., Kobayashi, K., & Nagase, S. (2005). Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. Journal of the American Chemical Society, 127, 14570–14571.
Yamada, M., Akasaka, T., & Nagase, S. (2010). Endohedral metal atoms in pristine and functionalized fullerene cages. Accounts of Chemical Research, 43, 92–102.
Yang, S. H., Shin, W. H., Lee, J. W., Kim, S. Y., Woo, S. I., & Kang, J. K. (2006a). Interaction of a transition metal atom with intrinsic defects in single-walled carbon nanotubes. The Journal of Physical Chemistry B, 110, 13941–13946.
Yang, S. H., Shin, W. H., & Kang, J. K. (2006b). Ni adsorption on Stone-Wales defect sites in single-wall carbon nanotubes. Journal of Chemical Physics, 125, 084705-1–084705-5.
Yang, F. H., Lachawiec, A. J., Jr., & Yang, R. T. (2006c). Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. The Journal of Physical Chemistry. B, 110, 6236–6244.
Yanov, I., Leszczynski, J., Sulman, E., Matveeva, V., & Semagina, N. (2004). Modeling of the molecular structure and catalytic activity of the new fullerene-based catalyst (η2-C60)Pd(PPh3)2: An application in the reaction of selective hydrogenation of acetylenic alcohols. International Journal of Quantum Chemistry, 100, 810–817.
Yu, D., Goh, K., Wang, H., Wei, L., Jiang, W., Zhang, Q., Dai, L., & Chen, Y. (2014). Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology, 9, 555–562.
Yuan, H., & He, Z. (2015). Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Nanoscale, 2015, 7022–7029.
Yumura, T., Nozaki, D., Bandow, S., Yoshizawa, K., & Iijima, S. (2005a). End-cap effects on vibrational structures of finite-length carbon nanotubes. Journal of the American Chemical Society, 127, 11769–11776.
Yumura, T., Sato, Y., Suenaga, K., & Iijima, S. (2005b). Which do endohedral Ti2C80 metallofullerenes prefer energetically: Ti2@C80 or Ti2C2@C78? A theoretical study. The Journal of Physical Chemistry B, 109, 20251–20255.
Yumura, T., Kertesz, M., & Iijima, S. (2007). Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes. The Journal of Physical Chemistry. B, 111, 1099–1109.
Zhang, J., & Zuo, J. M. (2009). Structure and diameter-dependent bond lengths of a multi-walled carbon nanotube revealed by electron diffraction. Carbon, 47, 3515–3528.
Zhang, B. L., Wang, C. Z., Ho, K. M., Xu, C. H., & Chan, C. T. (1993). The geometry of large fullerene cages: C72 to C102. Journal of Chemical Physics, 98, 3095–3102.
Zhang, G., Qi, P., Wang, X., Lu, Y., Mann, D., Li, X., & Dai, H. (2006). Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. Journal of the American Chemical Society, 128, 6026–6027.
Zhang, H., Cao, G., Wang, Z., Yang, Y., Shi, Z., & Gu, Z. (2008). Influence of ethylene and hydrogen flow rates on the wall number, Crystallinity, and length of millimeter-long carbon nanotube array. The Journal of Physical Chemistry C, 112, 12706–12709.
Zhao, K., & Pitzer, R. M. (1996). Electronic structure of C28, Pa@C28, and U@C28. Journal of Physical Chemistry, 100, 4798–4802.
Zhao, Y., & Truhlar, D. G. (2007). Size-selective supramolecular chemistry in a hydrocarbon nanoring. Journal of the American Chemical Society, 129, 8440–8442.
Zhao, Y., & Truhlar, D. G. (2008). Computational characterization and modeling of buckyball tweezers: Density functional study of concave–convex interactions. Physical Chemistry Chemical Physics, 10, 2813–2818.
Zhao, X., Slanina, Z., & Goto, H. (2004a). Theoretical studies on the relative stabilities of C96 IPR fullerenes. The Journal of Physical Chemistry. A, 108, 4479–4484.
Zhao, X., Goto, H., & Slanina, Z. (2004b). C100 IPR fullerenes: Temperature-dependent relative stabilities based on the Gibbs function. Chemical Physics, 306, 93–104.
Zhou, Z., Steigerwald, M., Hybertsen, M., Brus, L., & Friesner, R. A. (2004). Electronic structure of tubular aromatic molecules derived from the metallic (5,5) armchair single wall carbon nanotube. Journal of the American Chemical Society, 126, 3597–3607.
Zhou, L., Gao, C., Zhu, D. D., Xu, W., Chen, F. F., Palkar, A., Echegoyen, L., & Kong, E. S.-W. (2009). Facile functionalization of multilayer fullerenes (carbon nanoonions) by nitrene chemistry and grafting from strategy. Chemistry - European Journal, 15, 1389–1396.
Zhu, Z. H., Hatori, H., Wang, S. B., & Lu, G. Q. (2005). Insights into hydrogen atom adsorption on and the electrochemical properties of nitrogen-substituted carbon materials. The Journal of Physical Chemistry. B, 109, 16744–16749.
Zhu, Y., Li, L., Zhang, C., Casillas, G., Sun, Z., Yan, Z., Ruan, G., Peng, Z., Raji, A.-R., Kittrell, C., Hauge, R. H., & Tour, J. M. (2012). A seamless three-dimensional carbon nanotube graphene hybrid material. Nature Communications, 3, 1225.
Zope, R. R., Baruah, T., Pederson, M. R., & Dunlap, B. I. (2008). Static dielectric response of icosahedral fullerenes from C60 to C2160 characterized by an all-electron density functional theory. Physical Review B, 77, 115452-1–115452-5.
Acknowledgments
This work was supported by the High Performance Computational Design of Novel Materials (HPCDNM) Project funded by the Department of Defense (DoD) through the US Army Engineer Research and Development Center (Vicksburg, MS) Contract # W912HZ-06-C-0057 and by the Office of Naval Research (ONR) grant 08PRO2615-00/N00014-08-1-0324. JL acknowledges the support from the National Science Foundation (NSF) for the Interdisciplinary Center for Nanotoxicity (ICN) through CREST grant HRD-0833178. TCD acknowledges the start up support provided by the Clark Atlanta University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media Dordrecht
About this entry
Cite this entry
Dinadayalane, T.C., Leszczynski, J. (2016). Fundamental Structural, Electronic, and Chemical Properties of Carbon Nanostructures: Graphene, Fullerenes, Carbon Nanotubes, and Their Derivatives. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6169-8_22-2
Download citation
DOI: https://doi.org/10.1007/978-94-007-6169-8_22-2
Received:
Accepted:
Published:
Publisher Name: Springer, Dordrecht
Online ISBN: 978-94-007-6169-8
eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics