Molecular Structure and Vibrational Spectra

  • Jon Baker
Living reference work entry


This chapter deals with two very important aspects of modern ab initio computational chemistry: the determination of molecular structure and the calculation, and visualization, of vibrational spectra. It deals primarily with the practical aspects of determining molecular structure and vibrational spectra computationally. Both minima (i.e., stable molecules) and transition states are discussed, as well as infrared (IR), Raman, and vibrational circular dichroism (VCD) spectra, all of which can now be computed theoretically.


Hessian Matrix Potential Energy Curve Optimization Cycle Vibrational Circular Dichroism Rotational Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Badger, R. M. (1934). A relation between internuclear distances and bond force constants. Journal of Chemical Physics, 2, 128.CrossRefGoogle Scholar
  2. Badger, R. M. (1935). The relation between the internuclear distances and force constants of molecules and its application to polyatomic molecules. Journal of Chemical Physics, 3, 710.CrossRefGoogle Scholar
  3. Bak, K. L., Devlin, F. J., Ashvar, C. S., Taylor, P. R., Frisch, M. J., & Stephens, P. J. (1995). Ab initio calculation of vibrational circular dichroism spectra using gauge-invariant atomic orbitals. Journal of Physical Chemistry, 99, 14918.CrossRefGoogle Scholar
  4. Baker, J. (1986). An algorithm for the location of transition states. Journal of Computational Chemistry, 7, 385.CrossRefGoogle Scholar
  5. Baker, J. (1992). Geometry optimization in Cartesian coordinates: Constrained optimization. Journal of Computational Chemistry, 13, 240.CrossRefGoogle Scholar
  6. Baker, J. (1993). Techniques for geometry optimization: A comparison of Cartesian and natural internal coordinates. Journal of Computational Chemistry, 14, 1085.CrossRefGoogle Scholar
  7. Baker, J. (1997). Constrained optimization in delocalized internal coordinates. Journal of Computational Chemistry, 18, 1079.CrossRefGoogle Scholar
  8. Baker, J. (2008). A scaled quantum mechanical reinvestigation of the vibrational spectrum of toluene. Journal of Molecular Structure THEOCHEM, 865, 49.CrossRefGoogle Scholar
  9. Baker, J., & Bergeron, D. (1993). Constrained optimization in Cartesian coordinates. Journal of Computational Chemistry, 14, 1339.CrossRefGoogle Scholar
  10. Baker, J., & Chan, F. (1996). The location of transition states: A comparison of Cartesian, Z-matrix, and natural internal coordinates. Journal of Computational Chemistry, 17, 888.CrossRefGoogle Scholar
  11. Baker, J., & Hehre, W. J. (1991). Geometry optimization in Cartesian coordinates: The end of the Z-matrix? Journal of Computational Chemistry, 12, 606.CrossRefGoogle Scholar
  12. Baker, J., & Pulay, P. (1998). Predicting the vibrational spectra of some simple fluorocarbons by direct scaling of primitive valence force constants. Journal of Computational Chemistry, 19, 1187.CrossRefGoogle Scholar
  13. Baker, J., & Pulay, P. (2000). Efficient geometry optimization of molecular clusters. Journal of Computational Chemistry, 21, 69.CrossRefGoogle Scholar
  14. Baker, J., Muir, M., & Andzelm, J. (1985). A study of some organic reactions using density functional theory. Journal of Chemical Physics, 102, 2063.CrossRefGoogle Scholar
  15. Baker, J., Andzelm, J., Scheiner, A., & Delley, B. (1994). The effect of grid quality and weight derivatives in density functional calculations. Journal of Chemical Physics, 101, 8894.CrossRefGoogle Scholar
  16. Baker, J., Kessi, A., & Delley, B. (1996). The generation and use of delocalized internal coordinates in geometry optimization. Journal of Chemical Physics, 105, 192.CrossRefGoogle Scholar
  17. Baker, J., Jarzecki, A. A., & Pulay, P. (1998). Direct scaling of primitive valence force constants: An alternative approach to scaled quantum mechanical force fields. Journal of Physical Chemistry A, 102, 1412.CrossRefGoogle Scholar
  18. Baker, J., Kinghorn, D., & Pulay, P. (1999). Geometry optimization in delocalized internal coordinates: An efficient quadratically scaling algorithm for large molecules. Journal of Chemical Physics, 110, 4986.CrossRefGoogle Scholar
  19. Baker, J., Wolinski, K., Malagoli, M., Kinghorn, D., Wolinski, P., Magyarfalvi, G., Saebo, S., Janowski, T., & Pulay, P. (2009). Quantum chemistry in parallel with PQS. Journal of Computational Chemistry, 30, 317.CrossRefGoogle Scholar
  20. Bakken, V., & Helgaker, T. (2002). The efficient optimization of molecular geometries using redundant internal coordinates. Journal of Chemical Physics, 117, 9160.CrossRefGoogle Scholar
  21. Banerjee, A., Adams, N., Simons, J., & Shepard, R. (1985). Search for stationary points on surfaces. Journal of Physical Chemistry, 89, 52.CrossRefGoogle Scholar
  22. Becke, A. D. (1988). A multicenter numerical integration scheme for polyatomic molecules. Journal of Chemical Physics, 88, 2547.CrossRefGoogle Scholar
  23. Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648.CrossRefGoogle Scholar
  24. Bell, S., & Crighton, J. S. (1984). Locating transition states. Journal of Chemical Physics, 80, 2464.CrossRefGoogle Scholar
  25. Bell, S., Crighton, J. S., & Fletcher, R. (1981). A new efficient method for locating saddle points. Chemical Physics Letters, 82, 122.CrossRefGoogle Scholar
  26. Bertie, J. E., Apelblat, V., & Keefe, C. D. (2005). Infrared intensities of liquids XXV: Dielectric constants, molar polarizabilities and integrated intensities of liquid toluene at 25 °C between 4800 and 400 cm−1. Journal of Molecular Structure, 750, 78.CrossRefGoogle Scholar
  27. Beyer, M., & Clausen-Schaumann, H. (2005). Mechanochemistry: The mechanical activation of covalent bonds. Chemical Review, 105, 2921.CrossRefGoogle Scholar
  28. Binkley, J. S., Pople, J. A., & Hehre, W. J. (1980). Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. Journal of the American Chemical Society, 102, 939.CrossRefGoogle Scholar
  29. Blom, C. E., & Altona, C. (1976). Application of self-consistent-field ab initio calculations to organic molecules II. Scale factor method for the calculation of vibrational frequencies from ab initio force constants: Ethane, propane and cyclopropane. Molecular Physics, 31, 1377.CrossRefGoogle Scholar
  30. Blom, C. E., & Altona, C. (1977a). Application of self-consistent-field ab initio calculations to organic molecules IV. Force constants of propene scaled on experimental frequencies. Molecular Physics, 33, 875.CrossRefGoogle Scholar
  31. Blom, C. E., & Altona, C. (1977b). Application of self-consistent-field ab initio calculations to organic molecules V. Ethene: General valence force field scaled on harmonic and anharmonic data, infra-red and Raman intensities. Molecular Physics, 34, 177.CrossRefGoogle Scholar
  32. Blom, C. E., Otto, L. P., & Altona, C. (1976). Application of self-consistent-field ab initio calculations to organic molecules III. Equilibrium structure of water, methanol and dimethyl ether, general valence force field of water and methanol scaled on experimental frequencies. Molecular Physics, 32, 1137.CrossRefGoogle Scholar
  33. Bofill, J. M. (1994). Updated Hessian matrix and the restricted step method for locating transition structures. Journal of Computational Chemistry, 15, 1.CrossRefGoogle Scholar
  34. Born, M., & Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Annalen der Physik, 389, 457.CrossRefGoogle Scholar
  35. Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms. I: General considerations. Journal of the Institute of Mathematics and Its Applications, 6, 76.CrossRefGoogle Scholar
  36. Cerjan, C. J., & Miller, W. H. (1981). On finding transition states. Journal of Chemical Physics, 75, 2800.CrossRefGoogle Scholar
  37. Csaszar, P., & Pulay, P. (1984). Geometry optimization by direct inversion in the iterative subspace. Journal of Molecular Structure THEOCHEM, 114, 31.CrossRefGoogle Scholar
  38. Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. Journal of Chemical Physics, 54, 724.CrossRefGoogle Scholar
  39. Eckert, F., Pulay, P., & Werner, H.-J. (1997). Ab initio geometry optimization for large molecules. Journal of Computational Chemistry, 18, 1473.CrossRefGoogle Scholar
  40. Einstein, A., & Stern, O. (1913). Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt. Annals of Physics, 40, 551.CrossRefGoogle Scholar
  41. El Youssoufi, Y., Herman, M., & Liévin, J. (1998a). The ground electronic state of 1,2-dichloroethane I. Ab initio investigation of the geometrical, vibrational and torsional structure. Molecular Physics, 94, 461.CrossRefGoogle Scholar
  42. El Youssoufi, Y., Liévin, J., van der Auwera, J., Herman, M., Federov, A., & Snavely, D. L. (1998b). The ground electronic state of 1,2-dichloroethane II. Experimental investigation of the fundamental and overtone vibrations. Molecular Physics, 94, 473.CrossRefGoogle Scholar
  43. Farkas, O., & Schlegel, H. B. (1998). Methods for geometry optimization of large molecules. I. An O(N2) algorithm for solving systems of linear equations for the transformation of coordinates and forces. Journal of Chemical Physics, 109, 7100.CrossRefGoogle Scholar
  44. Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer Journal, 13, 317.CrossRefGoogle Scholar
  45. Fletcher, R. (1980). Practical methods of optimization (Vol. 1). New York: Wiley.Google Scholar
  46. Fogarasi, G., Zhou, X., Taylor, P. W., & Pulay, P. (1992). The calculation of ab initio molecular geometries: Efficient optimization by natural internal coordinates and empirical correction by offset forces. Journal of the American Chemical Society, 114, 8191.CrossRefGoogle Scholar
  47. Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. Mathematics of Computation, 24, 23.CrossRefGoogle Scholar
  48. Halgren, T. A., & Lipscomb, W. N. (1977). The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chemical Physics Letters, 49, 225.CrossRefGoogle Scholar
  49. Halls, M. D., Velkovski, J., & Schlegel, H. B. (2001). Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theoretical Chemistry Accounts, 105, 413.CrossRefGoogle Scholar
  50. Hammond, G. S. (1955). A correlation of reaction rates. Journal of the American Chemical Society, 77, 334.CrossRefGoogle Scholar
  51. Hertwig, R. H., & Koch, W. (1997). On the parameterization of the local correlation functional. What is Becke-3-LYP? Chemical Physics Letters, 268, 345.CrossRefGoogle Scholar
  52. Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review B, 136, 864.CrossRefGoogle Scholar
  53. Ionova, I. V., & Carter, E. A. (1993). Ridge method for finding saddle points on potential energy surfaces. Journal of Chemical Physics, 98, 6377.CrossRefGoogle Scholar
  54. Jiang, H., Appadoo, D., Robertson, E., & McNaughton, D. (2002). A comparison of predicted and experimental vibrational spectra in some small fluorocarbons. Journal of Computational Chemistry, 23, 1220.CrossRefGoogle Scholar
  55. Johnson, B. G., Gill, P. M. W., & Pople, J. A. (1993). The performance of a family of density functional methods. Journal of Chemical Physics, 98, 5612.CrossRefGoogle Scholar
  56. Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review A, 140, 1133.CrossRefGoogle Scholar
  57. Kveseth, K. (1974). Conformational analysis. 1. The temperature effect on the structure and composition of the rotational conformers of 1,2-dichloroethane as studied by gas electron diffraction. Acta Chemica Scandinavica A, 28, 482.CrossRefGoogle Scholar
  58. Lindh, R., Bernhardsson, A., Karlström, G., & Malmquist, P.-A. (1995). On the use of a Hessian model function in molecular geometry optimizations. Chemical Physics Letters, 241, 423.CrossRefGoogle Scholar
  59. Malagoli, M., & Baker, J. (2003). The effect of grid quality and weight derivatives in density functional calculations of harmonic vibrational frequencies. Journal of Chemical Physics, 119, 12763.CrossRefGoogle Scholar
  60. McQuarrie, D. A. (2000). Statistical mechanics. California: University Science.Google Scholar
  61. Merrick, J. P., Moran, D., & Radom, L. (2007). An evaluation of harmonic vibrational frequency scale factors. Journal of Physical Chemistry A, 111, 11683.CrossRefGoogle Scholar
  62. Mitin, A. V., Baker, J., & Pulay, P. (2003). An improved 6-31G* basis set for first-row transition metals. Journal of Chemical Physics, 118, 7775.CrossRefGoogle Scholar
  63. Mizushima, S., Shimanouchi, T., Harada, I., Abe, Y., & Takeuchi, H. (1975). Infrared and Raman spectra of 1,2-dichloroethane and its deuterium compound in the gaseous, liquid, and solid states. Canadian Journal of Physics, 53, 2085.CrossRefGoogle Scholar
  64. Muir, M., & Baker, J. (1996). A systematic density functional study of fluorination in methane, ethane and ethylene. Molecular Physics, 89, 211.CrossRefGoogle Scholar
  65. Murtagh, B. A., & Sargent, R. W. H. (1970). Computational experience with quadratically convergent minimisation methods. Computer Journal, 13, 185.CrossRefGoogle Scholar
  66. Paizs, B., Baker, J., Suhai, S., & Pulay, P. (2000). Geometry optimization of large biomolecules in redundant internal coordinates. Journal of Chemical Physics, 113, 6566.CrossRefGoogle Scholar
  67. Pardalos, P. M., Shalloway, D., & Xue, G. (Eds.). (1995). Global minimization of nonconvex functions: Molecular conformation and protein folding. Providence: American Mathematical Society.Google Scholar
  68. Peng, C., & Schlegel, H. B. (1993). Combining synchronous transit and quasi-Newton methods to find transition states. Israel Journal of Chemistry, 33, 449.CrossRefGoogle Scholar
  69. Peng, C., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 17, 49.CrossRefGoogle Scholar
  70. Pople, J. A., Krishnan, R., Schlegel, H. B., & Binkley, J. S. (1979). Derivative studies in Hartree-Fock and Møller-Plesset theories. International Journal of Quantum Chemistry: Symposium, 13, 225.Google Scholar
  71. Poppinger, D. (1975). On the calculation of transition states. Chemical Physics Letters, 35, 550.CrossRefGoogle Scholar
  72. Powell, M. J. D. (1971). Recent advances in unconstrained optimization. Mathematical Programming, 1, 26.CrossRefGoogle Scholar
  73. PQS. (2010). PQS version 4.0. Parallel Quantum Solutions 2013 Green Acres Road, Suite A, Fayetteville, AR 72703. Email: URL:
  74. Pulay, P. (1977). Direct use of the gradient for investigating molecular energy surfaces. New York: Plenum.CrossRefGoogle Scholar
  75. Pulay, P. (1980). Convergence acceleration of iterative sequences. The case of SCF iteration. Chemical Physics Letters, 73, 393.CrossRefGoogle Scholar
  76. Pulay, P. (1982). Improved SCF convergence acceleration. Journal of Computational Chemistry, 3, 556.CrossRefGoogle Scholar
  77. Pulay, P., & Fogarasi, G. (1992). Geometry optimization in redundant internal coordinates. Journal of Chemical Physics, 96, 2856.CrossRefGoogle Scholar
  78. Pulay, P., & Torok, F. (1966). On the parameter form of the force constant matrix II. Investigation of the assignment with the aid of the parameter form. Acta Chimica Academiae Scientarium Hungaricae, 47, 273.Google Scholar
  79. Pulay, P., Fogarasi, G., Pang, F., & Boggs, J. E. (1979). Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives. Journal of the American Chemical Society, 101, 2550.CrossRefGoogle Scholar
  80. Pulay, P., Fogarasi, G., Pongor, G., Boggs, J. E., & Vargha, A. (1983). Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants. Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. Journal of the American Chemical Society, 105, 7037.CrossRefGoogle Scholar
  81. Raman, C. V., & Krishnan, K. S. (1928). A new type of secondary radiation. Nature, 121, 501.CrossRefGoogle Scholar
  82. Rassalov, V. A., Pople, J. A., Ratner, M. A., & Windus, T. L. (1998). 6-31G* basis set for atoms K through Zn. Journal of Chemical Physics, 109, 1223.CrossRefGoogle Scholar
  83. Schäfer, L. (1983). The ab initio gradient revolution in structural chemistry: The importance of local molecular geometries and the efficacy of joint quantum mechanical and experimental procedures. Journal of Molecular Structure, 100, 51.CrossRefGoogle Scholar
  84. Schlegel, H. B. (1984). Estimating the hessian for gradient-type geometry optimizations. Theoretica Chimica Acta, 66, 333.CrossRefGoogle Scholar
  85. Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 24, 647.CrossRefGoogle Scholar
  86. Simons, J., Jorgensen, P., Taylor, H., & Ozment, J. (1983). Walking on potential energy surfaces. Journal of Physical Chemistry, 87, 2745.CrossRefGoogle Scholar
  87. Stephens, P. J., & Lowe, M. A. (1985). Vibrational circular dichroism. Annual Review of Physical Chemistry, 36, 213.CrossRefGoogle Scholar
  88. Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods I. Method. Journal of Computational Chemistry, 10, 209.CrossRefGoogle Scholar
  89. Swart, M., & Bickelhaupt, F. M. (2006). Optimization of strong and weak coordinates. International Journal of Quantum Chemistry, 106, 2536.CrossRefGoogle Scholar
  90. Wikipedia (2010). The article “Born–Oppenheimer approximation.”Google Scholar
  91. Wilson, E. B., Decius, J. C., & Cross, P. C. (1955). Molecular vibrations. New York: McGraw-Hill.Google Scholar
  92. Wolinski, K., & Baker, J. (2009). Theoretical predictions of enforced structural changes in molecules. Molecular Physics, 107, 2403.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Parallel Quantum SolutionsFayettevilleUSA

Personalised recommendations