Advertisement

Physical Aging of Polymer Blends

  • J. M. G. Cowie
  • V. Arrighi
Reference work entry

Abstract

The selection of polymers and polymer blends for use as specific materials requires the consideration of how these will withstand the environmental conditions to which these will be subjected. The long-term stability of a polymer will depend on its aging characteristics both physical and chemical.

Physical aging is the term used to describe the observed changes in properties of glassy materials as a function of storage time, at a temperature below the glass transition, T g . This phenomenon is important mainly when the materials have a substantial amorphous content. For these materials, a quench from above T g into the glassy state introduces a nonequilibrium structure which, on annealing at constant temperature, approaches an equilibrium state via small-scale relaxation processes in the glassy state. The aging process can be detected through the time evolution of thermodynamic properties such as the specific volume or enthalpy or mechanical methods such as creep, stress-relaxation, and dynamic mechanical measurements. Here, the fundamental principles of physical aging will be described, and models that quantitatively describe the aging process are briefly described.

Physical aging effects have practical implications and need to be considered when assessing the long-term stability of polymers and polymer–polymer mixtures. This chapter focuses on a discussion of the effect of blending on physical aging and gives a review of the different experimental methods that can be used to compare aging rates in blends to those of the individual components.

Keywords

Aging Time Free Volume Polymer Blend Glassy State Physical Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Abbreviations

General and Chemical

ABS

Acrylonitrile–butadiene–styrene

AIM

Acrylic Impact Modifier

AN

Acrylonitrile

BPAPC

Bisphenol-A polycarbonate

CCS-PS

Core cross-linked star PS

CPSF

Carboxylated polysulfone

C-F

Cowie–Ferguson model

Dil

Dilatometry

DSC

Differential scanning calorimetry

FTIR

Fourier-transform infrared spectroscopy

GD

Gibbs and Di Marzio theory

G-M

Gomez-Ribelles and Monleon-Padras model

HS

4-Hydroxystyrene

IPN

Interpenetrating network

KWW

Kohlrausch, Williams, and Watts function

Mech

Mechanical

NR

Natural rubber

PALS

Positronium annihilation lifetime spectroscopy

PB

Polybutadiene

PEEK

Polyether ether ketone

PEG

Polyethylene glycol

PEI

Polyether imide

PEMA

Poly(ethyl methacrylate)

PEO

Polyethylene oxide

PES

Poly(ether sulfone)

PHS

Poly(hydroxy styrene)

PiPMA

Poly(isopropyl methacrylate)

PLA

Poly(lactic acid)

PMA

Polymethacrylate

PMMA

Poly(methyl methacrylate)

PPO

Poly(p-phenylene oxide) or poly(2,6-dimethyl-1,4-phenylene ether) (PPE)

PPS

Polyphenylene sulfide

PS

Polystyrene (atactic)

PSF

Polysulfone

P-M

Petrie–Marshall model

PU

Polyurethane

PVAc

Polyvinyl acetate

PVC

Polyvinyl chloride

PVDF

Polyvinylidenefluoride

PVME

Poly(vinyl methyl ether)

P2VP

Poly(2-vinylpyridine)

PVP

Poly(N-vinyl pyrrolidone)

SAN

Poly(styrene-stat-acrylonitrile)

S

Styrene

SBR

Styrene butadiene rubber

SEBS

Hydrogenated styrene–butadiene–styrene block copolymer

SMA

Styrene-co-maleic anhydride

S-S

Theory of Simha–Somcynsky

TNM

Tool–Narayanaswamy–Moynihan model

VA

Vinyl alcohol

VAc

Vinyl acetate

Notations

Notation Roman Letters
A

Fitting constant

bV

Volume relaxation rate

Cp

Heat capacity

CT

Adjustable temperature coefficient

Ct

Adjustable time coefficient

ΔCp

Heat capacity change

Do

Creep compliance at zero time

D(t)

Creep compliance at time t

Eo

Modulus at zero time

E(t)

Modulus at time t

Go

Stress-relaxation moduli at zero time

G(t)

Stress-relaxation moduli at time t

H

Enthalpy

H(∞)

Equilibrium enthalpy value

ΔH

Enthalpy change

Δh*

Effective activation energy

e+

Positively charged positron

I3

Relative intensity of the oPs component

oPs

Ortho-positronium

Ps

Positronium

q

Cooling rate

r

Cavity radius

R

Gas constant

Sc

Configurational entropy

t

Time

T

Temperature

ta

Annealing time

Ta

Annealing temperature

tc

Characteristic time

Tf

Fictive temperature

Tg

Glass transition temperature

V

Specific volume

V

Specific volume at equilibrium, at temperature T

x

Structural parameter

Notation Greek Letters

β

Parameter of KWW function

βT

Isothermal compressibility

δ

Departure from equilibrium

ε

Strain

ϕ(t)

Relaxation function

σ

Stress

μ

Shift factor

τ

Relaxation time

τ3

oPs lifetime

τo

Equilibrium relaxation time

ωc

Critical frequency

References

  1. R. Acioli-Moura, X.S. Sun, Polym. Eng. Sci. 48, 829 (2008)Google Scholar
  2. K. Adachi, T. Kotaka, Polym. J. 14, 959 (1982)Google Scholar
  3. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)Google Scholar
  4. C.A. Angell, J. Non Cryst. Solids 131, 13 (1991)Google Scholar
  5. V. Arrighi, J.M.G. Cowie, R. Ferguson, I.J. McEwen, E.-A. McGonigle, R.A. Pethrick, E. Princi, Polym. Int. 55, 749 (2006)Google Scholar
  6. R. Asaletha, P. Bindu, I. Aravind, A.P. Meera, S.V. Valsaraj, W.M. Yang, S.J. Thomas, Appl. Polym. Sci. 108, 904 (2008)Google Scholar
  7. N.V. Babkina, L.F. Kosyanchuk, T.T. Todosiichuk, N.V. Kozak, G.Y. Menzheres, G.M. Nesterenko, Polym. Sci. A 54, 125 (2012)Google Scholar
  8. G.P. Belloch, M. S. Sanchez, J. L. G. Ribelles, M. M. Pradas, J. M. M. Duenas, P. Pissis, Polym Eng Sci. 39, 688 (1999)Google Scholar
  9. K.M. Bernatz, L. Giri, S.L. Simon, D.J. Plazek, J. Chem. Phys. 111, 2235 (1999)Google Scholar
  10. H.C. Booij, J.H.M. Palmen, Polym. Eng. Sci. 18, 78 (1978)Google Scholar
  11. M. Bosma, G. ten Brinke, T.S. Ellis, Macromolecules 21, 1464 (1988)Google Scholar
  12. C.D. Breach, M.J. Folkes, J.M. Barton, Polymer 33, 3080 (1992)Google Scholar
  13. A. Brunacci, J.M.G. Cowie, R. Ferguson, I.J. McEwen, Polymer 38, 865 (1997a)Google Scholar
  14. A. Brunacci, J.M.G. Cowie, R. Ferguson, I.J. McEwen, Polymer 35, 3263 (1997b)Google Scholar
  15. A. Brunacci, J.M.G. Cowie, I.J. McEwen, J. Chem. Soc. Faraday Trans. 94, 1105 (1998)Google Scholar
  16. N.R. Cameron, J.M.G. Cowie, R. Ferguson, I. McEwan, Polymer 42, 6991 (2001)Google Scholar
  17. N. Cameron, J.M.G. Cowie, R. Ferguson, J.L.G. Ribelles, J.M. Estelles, Eur. Polym. J. 38, 597 (2002)Google Scholar
  18. J.A. Campbell, A.A. Goodwin, F.W. Mercer, V. Reddy, High Perform. Polymers 9, 263 (1997)Google Scholar
  19. C.K. Chai, N.G. McCrum, Polymer 21, 706 (1980)Google Scholar
  20. G.-W. Chang, A.M. Jamieson, Z. Yu, J.D. McGervey, J. Appl. Polym. Sci. 63, 483 (1997)Google Scholar
  21. T.W. Cheng, H. Keskkula, D.R. Paul, J. Appl. Polym. Sci. 45, 531 (1992)Google Scholar
  22. J.M.G. Cowie, R. Ferguson, Polym. Commun. 27, 258 (1986)Google Scholar
  23. J.M.G. Cowie, S. Elliott, R. Ferguson, R. Simha, Polym. Commun. 28, 298 (1987)Google Scholar
  24. J.M.G. Cowie, R. Ferguson, Macromolecules 22, 2312 (1989)Google Scholar
  25. J.M.G. Cowie, S. Elliot, Internal publication, Heriot-Watt University, Edinburgh (1990)Google Scholar
  26. J.M.G. Cowie, R. Ferguson, Paper presented at IUPAC, Montreal (1991)Google Scholar
  27. J.M.G. Cowie, R. Ferguson, Polymer 34, 2135 (1993)Google Scholar
  28. J.M.G. Cowie, I.J. McEwen, S. Matsuda, J. Chem. Soc. Faraday Trans. 94, 3481 (1998)Google Scholar
  29. J.M.G. Cowie, S. Harris, J.L. Gomez Ribelles, J.M. Meseguer, F. Romero, C. Torregrosa, Macromolecules 32, 4430 (1999)Google Scholar
  30. J.M.G. Cowie, I. McEwan, I.J. McEwen, R.A. Pethrick, Macromolecules 34, 7071 (2001)Google Scholar
  31. J.M.G. Cowie, V. Arrighi, E.-A. McGonigle, Macromol. Chem. Phys. 206, 767 (2005)Google Scholar
  32. M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981)Google Scholar
  33. T.S. Ellis, Macromolecules 23, 1494 (1990)Google Scholar
  34. J.M. Estelles, J.L.G. Ribelles, M.M. Pradas, Polymer 34, 3837 (1993)Google Scholar
  35. J.H. Gibbs, J. Di Marzio, Chem. Phys. 28, 373 (1958)Google Scholar
  36. R. Greiner, F.R. Schwarzl, Rheol. Acta 23, 378 (1984)Google Scholar
  37. J.L. Gomez-Ribelles, M. Monleon-Pradas, Macromolecules 28, 5867 (1995)Google Scholar
  38. J.L. Gomez-Ribelles, M. Monleon, A. Vidaurre, F. Romero, J. Estelles, J.M. Mesegner, Macromolecules 28, 5878 (1995)Google Scholar
  39. A.A. Goodwin, J. Appl. Polym. Sci. 72, 543 (1999)Google Scholar
  40. R. Grooten, G. ten Brinke, Macromolecules 22, 1761 (1989)Google Scholar
  41. Y.L. Guo, R.D. Bradshaw, Mech. Time-Depend. Mater. 11, 61 (2007)Google Scholar
  42. M. Haghighi-Yazdi, P. Lee-Sullivan, Mech. Time-Depend. Mater. 17, 171 (2013)Google Scholar
  43. J.N. Hay, Prog. Colloid Polym. Sci. 87, 74 (1992)Google Scholar
  44. T. Ho, J. Mijovic, C. Lee, Polymer 32, 619 (1991)Google Scholar
  45. I.M. Hodge, A.R. Berens, Macromolecules 14, 1599 (1981)Google Scholar
  46. I.M. Hodge, A.R. Berens, Macromolecules 15, 762 (1982)Google Scholar
  47. I.M. Hodge, G.S. Huvard, Macromolecules 16, 371 (1983)Google Scholar
  48. I.M. Hodge, Macromolecules 20, 2897 (1987)Google Scholar
  49. B.K. Hong, W.H. Jo, J. Kim, Polymer 39, 3753 (1998)Google Scholar
  50. J.M. Hutchinson, Prog. Coll. Polym. Sci. 87, 69 (1992)Google Scholar
  51. J.M. Hutchinson, P. Kumar, Thermochim. Acta 391, 197 (2002)Google Scholar
  52. G.P. Johari, J. Chem. Phys. 77, 4619 (1982)Google Scholar
  53. S.R. Jong, T.L. Yu, J. Polym. Sci. Part B Polym. Phys. 35, 69 (1997)Google Scholar
  54. R. Jorda, G.L. Wilkes, Polym. Bull. 20, 479 (1988)Google Scholar
  55. R. Kohlrausch, Pogg. Ann. 12, 393 (1897)Google Scholar
  56. A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, A.R. Ramos, J. Polym. Sci. Polym. Phys. Ed. 17, 1079 (1979)Google Scholar
  57. M.J. Kubát, P. Ríha, R.W. Rychwalski, S. Uggla, Mech. Time-Depend. Mater. 3, 31 (1999)Google Scholar
  58. M.J. Kubát, P. Riha, R.W. Rychwalski, J. Kubat, Europhys. Lett. 50, 507 (2000)Google Scholar
  59. W.W.Y. Lau, Y.G. Jiang, P.P.K. Tan, Polym. Int. 31, 163 (1993)Google Scholar
  60. J.J. Laverty, Polym. Eng. Sci. 28(6), 360 (1988)Google Scholar
  61. Q. Li, S.L. Simon, Polymer 47, 4781 (2006)Google Scholar
  62. F.H.J. Maurer, J.H.M. Palmen, H.C. Booij, Rheol. Acta. 24, 243 (1985)Google Scholar
  63. N.G. McCrum, Plast. Rubb. Comp. Proc. Appl. 18, 181 (1992)Google Scholar
  64. E.-A. McGonigle, J.M.G. Cowie, V. Arrighi, R.A. Pethrick, J. Mater. Sci. 40, 1869 (2005)Google Scholar
  65. G.B. McKenna, Physical aging in glasses and composites, in Long-Term Durability of Polymeric Matrix Composites, ed. by K.V. Pochiraju, G.P. Tandon, G.A. Schoeppner (Springer, New York, 2012), pp. 237–31Google Scholar
  66. J. Mijovic, T. Ho, T.K. Kwei, Polym. Eng. Sci. 29, 1604 (1989)Google Scholar
  67. J. Mijovic, S.T. Devine, T. Ho, J. Appl. Polym. Sci. 39, 1133 (1990)Google Scholar
  68. J. Mijovic, T. Ho, C. Lee, Polymer 32, 619 (1991)Google Scholar
  69. J. Mijovic, T. Ho, Polymer 34, 3865 (1993)Google Scholar
  70. E. Morales, J.L. Acosta, Polym. J. 27, 226 (1995)Google Scholar
  71. C.T. Moynihan, P.B. Macedo, C.J. Montrose, P.K. Gupta, M.A. DeBolt, J.F. Dill, B.E. Dom, P.W. Drake, A.J. Easteal, P.B. Elterman, R.P. Moeller, H. Sasabe, J.A. Wilder, Ann. N.Y. Acad. Sci. 279, 15 (1976)Google Scholar
  72. K. Naito, G.E. Johnson, D.L. Allara, T.K. Kwei, Macromolecules 11, 1260 (1978)Google Scholar
  73. K.L. Ngai, Comments Solid State Phys. 9, 127 (1979)Google Scholar
  74. O.S. Narayanaswamy, J. Am. Ceram. Soc. 54, 491 (1971)Google Scholar
  75. E.F. Oleinik, Polym. J. 19, 105 (1987)Google Scholar
  76. A.A.C.N. Oudhuis, G. ten Brinke, Macromolecules 25, 698 (1992)Google Scholar
  77. A.K. Oultache, Y. Zhao, B. Jasse, L. Monnerie, Polymer 35, 681 (1994)Google Scholar
  78. D.R. Paul, J.W. Barlow, Polymer 25, 287 (1984)Google Scholar
  79. M. Penco, L. Sartore, S. Della Sciucca, Polym. Eng. Sci. 47, 218 (2007)Google Scholar
  80. S.E.B. Petrie, A.S. Marshall, J. Appl. Phys. 46, 4223 (1975)Google Scholar
  81. J.L.G. Ribelles, J.M.M. Duenas, C.T. Cabanilles, M.M. Pradas, J. Phys. Cond. Matter 15, S1149 (2003)Google Scholar
  82. P. Riha, J. Hadac, P. Slobodian, P. Saha, R.W. Rychwalski, J. Kubat, Polymer 48, 7356 (2007)Google Scholar
  83. R.E. Robertson, J. Polym. Sci. Polym. Phys. Ed. 17, 597 (1979)Google Scholar
  84. R.E. Robertson, R. Simha, J.G. Curro, Macromolecules 17, 911 (1984)Google Scholar
  85. C.G. Robertson, G.L. Wilkes, Polymer 41, 9191 (2000)Google Scholar
  86. C.G. Robertson, G.L. Wilkes, Polymer 42, 1581 (2001)Google Scholar
  87. C.M. Roland, K.L. Ngai, Macromolecules 25, 363 (1992)Google Scholar
  88. E.M.S. Sanchez, Polym. Test. 26, 378 (2007)Google Scholar
  89. G. Sartor, E. Mayer, G.P.J. Johari, Polym. Sci. Polym. Phys. 32, 683 (1994)Google Scholar
  90. P. Shi, R. Schach, E. Munch, H. Montes, F. Lequeux, Macromolecules 46, 3611 (2013)Google Scholar
  91. S. Shimada, O. Isogai, Polym. J. 28, 655 (1996)Google Scholar
  92. R. Simha, T. Somcynsky, Macromolecules 2, 342 (1969)Google Scholar
  93. P. Slobodian, A. Lengalova, P. Saha, Polym. J. 36, 176 (2004)Google Scholar
  94. P. Slobodian, P. Riha, R.W. Rychwalski, I. Emri, P. Saha, J. Kubat, Eur. Polym. J. 42, 2824 (2006a)Google Scholar
  95. P. Slobodian, J. Vernel, V. Pelisek, P. Saha, P. Riha, R.W. Rychwalski, J. Kubat, I. Emri, Mech. Time-Depend. Mater. 10, 1 (2006b)Google Scholar
  96. S. Spoljaric, A. Genovese, T.K. Goh, A. Blencowe, G.G. Qiac, R.A. Shanks, Macromol. Chem. Phys. 212, 1677 (2011)Google Scholar
  97. L.C.E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Amsterdam, 1978)Google Scholar
  98. S. Suzuki, S. Nishitsuji, T. Inoue, Polym. Eng. Sci. 52, 1958 (2012)Google Scholar
  99. Z.Y. Tan, S.L. Sun, X.F. Xu, C. Zhou, Y.H. Ao, H.X. Zhang, J. Polym. Sci. Polym. Phys. 43, 2715 (2005)Google Scholar
  100. J.K.Y. Tang, P. Lee-Sullivan, J. Appl. Polym. Sci. 110, 97 (2008)Google Scholar
  101. G. ten Brinke, R. Grooten, Colloid Polym. Sci. 267, 992 (1989)Google Scholar
  102. G. ten Brinke, G., Karasz, F. E., MacKnight, W. J. Macromolecules. 16, 1827 (1983)Google Scholar
  103. G. ten Brinke, L. Oudhuis, L., T. S. Ellis, Thermochmica Acta. 238, 75 (1994)Google Scholar
  104. A.Q. Tool, J. Am. Ceram. Soc. 29, 240 (1946)Google Scholar
  105. J. Vernel, R.W. Rychwalski, V. Pelisek, P. Saha, M.K. Schmidt, F.H.J. Maurer, Thermochim. Acta 342, 115 (1999)Google Scholar
  106. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)Google Scholar
  107. M. Yun, N. Jung, C. Yim, S. Jeon, Polymer 52, 4136 (2011)Google Scholar
  108. S.H. Zhang, X. Jin, P.C. Painter, J. Runt, Polymer 45, 3933 (2004)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Chemical Sciences, School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations