Advertisement

Morphology of Polymer Blends

  • Toshiaki Ougizawa
  • Takashi Inoue
Reference work entry

Abstract

In this chapter, as a guideline to control the phase separation morphology, the morphology formation mechanism is primarily explained. First the phase diagram and the phase separation mechanism are briefly explained to provide basic knowledge on controlling the morphology of polymer blends. Then, the effect of the shear flow on the phase diagram as a factor that influences the formation of the phase separation morphology is explained and the relation to the morphology control is shown. This is especially important in the polymer processing of polymer blends. Finally, as a control of the phase separation morphology using reactions, reaction-induced phase separation and reactive blending are explained. Because most polymer blends are immiscible, it is necessary to use some methods to obtain polymer blends that show good physical properties. Therefore, these are powerful tools for controlling the morphology in the polymer blends.

Keywords

Shear Rate Phase Separation Cloud Point Shear Flow Graft Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Notation and Abbreviations

Notation

ds

Spatial dimensionality

GM

Free energy of mixing

q

Magnitude of scattering vector

R

Gas constant

r

Number of segments in polymer chain

S

Spreading coefficient

Tg

Glass transition temperature

Tm

Melting temperature of crystal

Ts

Spinodal temperature

V

Volume

Γi/j

Interfacial tension between i and j

\( \dot{\boldsymbol{\upgamma}} \)

Shear rate

θ

scattering angle

Λm

Periodic distance

λ

Wavelength of light in the medium

τ

Surface-to-surface interparticle distance

τξ

Characteristic relaxation time

ϕi

Volume fraction of component i

χ12

Binary interaction parameter

Abbreviations

ABS

Acrylonitrile-butadiene-styrene resin

AIBN

α,α′-azobis(isobutyronitrile)

cPC

PC copolymer

c-RIPS

Curing reaction-induced phase separation

DAP

Diallyl phthalate

DCP

Dicumyl peroxide

EGMA

Poly(ethylene-co-glycidyl methacrylate)

EPR

Ethylene-propylene rubber

EVAc

Poly(ethylene-co-vinyl acetate)

LCST

Lower critical solution temperature

LS

Light scattering

MAH

Maleic anhydride

MMA

Methyl methacrylate

NG

Nucleation and growth

OM

Optical microscope

PA4,6

Polyamide (nylon) 4,6

PA-6

Polyamide (nylon) 6

PBT

Poly(butylene terephthalate)

PC

Bisphenol-A polycarbonate

PE

Polyethylene

PES

Poly(ether sulfone)

PLA

Poly(lactic acid)

PMMA

Poly(methyl methacrylate)

PP

polypropylene

PPE

Poly(phenylene ether)

PVME

Poly(vinyl methyl ether)

PPS

Poly(phenylene sulfide)

p-RIPS

Polymerization reaction-induced phase separation

PS

Polystyrene

RIPS

Reaction-induced phase separation

SAN

Poly(styrene-co-acrylonitrile)

SD

Spinodal decomposition

SEBS

Hydrogenated styrene-butadiene-styrene copolymer

TAC

Triallyl cyanurate

TEM

Transmission electron microscope

UCST

Upper critical solution temperature

References

  1. J.-B. An, T. Ougizawa, T. Inoue, Y. Ishii, T. Yoshizaki, in 16th Polymer Processing Society, Abstract. 2001, p. 21Google Scholar
  2. J.-B. An, T. Suzuki, T. Ougizawa, T. Inoue, K. Mitamura, K. Kawanishi, J. Macromol. Sci. Phys. B41(407) (2002)Google Scholar
  3. J.C. Angola, Y. Fujita, T. Sakai, T. Inoue, J. Polym. Sci. Phys. 26, 807 (1988)CrossRefGoogle Scholar
  4. W. Baker, S. Scott, G.H. Hu (eds.), Reactive Polymer Blending (Hanser, Munich, 2001)Google Scholar
  5. D. Beysens, M.J. Gbadamassi, Phys. Lett. (Paris) 40, L565 (1979)CrossRefGoogle Scholar
  6. D. Beysens, F.J. Perrot, Phys. Lett. (Paris) 45, L31 (1984)CrossRefGoogle Scholar
  7. K. Binder, D. Stauffer, Phys. Rev. Lett. 33, 1006 (1973)CrossRefGoogle Scholar
  8. C.B. Bucknall, Toughened Plastics (Applied Science, London, 1977)CrossRefGoogle Scholar
  9. J.W. Cahn, J. Chem. Phys. 42, 93 (1965)CrossRefGoogle Scholar
  10. J.W. Cahn, Trans. Met. Soc. AIME 242, 166 (1968)Google Scholar
  11. P. Charoensirisomboon, T. Chiba, S.I. Solomko, T. Inoue, Polymer 40, 6803 (1999)CrossRefGoogle Scholar
  12. P. Charoensirisomboon, T. Inoue, M. Weber, Polymer 41, 4483 (2000)CrossRefGoogle Scholar
  13. W. Chen, S. Kobayashi, T. Inoue, T. Ohnaga, T. Ougizawa, Polymer 35, 4015 (1994)CrossRefGoogle Scholar
  14. A.Y. Coran, R. Patel, Rubber Chem. Technol. 56, 1045 (1983)CrossRefGoogle Scholar
  15. B.D. Favis, J.M. Willis, J. Polym. Sci.: Polym. Phys. 28, 2259 (1990)CrossRefGoogle Scholar
  16. J. Fernandez, J.S. Higgins, R. Horst, B. Wolf, Polymer 36, 149 (1995)CrossRefGoogle Scholar
  17. D.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953)Google Scholar
  18. M. Furuta, Y. Koyama, T. Inoue, e-J. Soft Mater. 3, 49 (2007)CrossRefGoogle Scholar
  19. G.M. Hanafy, S.A. Madbouly, T. Ougizawa, T. Inoue, Polymer 45, 6879 (2004)CrossRefGoogle Scholar
  20. K. Hashima, K. Usui, L. Fu, T. Inoue, K. Fujimoto, K. Segawa, T. Abe, H. Kimura, Polym. Eng. Sci. 48, 1207 (2008)CrossRefGoogle Scholar
  21. K. Hashima, S. Nishitsuji, T. Inoue, Polymer 51, 3934 (2010)CrossRefGoogle Scholar
  22. E. Helfand, G.H. Fredrickson, Phys. Rev. Lett. 62, 2468 (1989)CrossRefGoogle Scholar
  23. I.A. Hindawi, J.S. Higgins, R.A. Weiss, Polymer 33, 2522 (1992)CrossRefGoogle Scholar
  24. J. Ibuki, P. Charoensirisomboon, T. Chiba, T. Ougizawa, T. Inoue, M. Weber, E. Koch, Polymer 40, 647 (1999)CrossRefGoogle Scholar
  25. F. Ide, A. Hasegawa, J. Appl. Polym. Sci. 18, 963 (1974)CrossRefGoogle Scholar
  26. T. Inoue, Prog. Polym. Sci. 20, 119 (1995)CrossRefGoogle Scholar
  27. T. Inoue, J. Jpn. Soc. Polym. Process. 8, 24 (1996)Google Scholar
  28. T. Inoue, S. Kobayashi, Recent Res. Devel. Polym. Sci. 11, 1 (2011)Google Scholar
  29. I. Ito, M. Furuta, S. Nishituji, T. Inoue, in 28th Polymer Process Society, Pattaya, Thailand, Dec 13 2012Google Scholar
  30. H.W. Kammer, C. Kummerloewe, J. Kressler, J.P. Melior, Polymer 32, 1488 (1991)CrossRefGoogle Scholar
  31. J. Katsaros, M. Malone, H. Winter, Polym. Eng. Sci. 29, 1434 (1989)CrossRefGoogle Scholar
  32. T. Kojima, T. Ohnaga, T. Inoue, Polymer 36, 2197 (1995)CrossRefGoogle Scholar
  33. F.B.C. Larbi, M.F. Malone, H.H. Winter, J.L. Halary, M.H. Leviet, L. Monnerie, Macromolecules 21, 3534 (1988)CrossRefGoogle Scholar
  34. H. Li, Y. Yang, R. Fujitsuka, T. Ougizawa, T. Inoue, Polymer 40, 927 (1999)CrossRefGoogle Scholar
  35. J. Lyngaae-Jorgensenn, K. Sondegaard, Polym. Eng. Sci. 27, 351 (1987)CrossRefGoogle Scholar
  36. S.A. Madbouly, M. Ohmomo, T. Ougizawa, T. Inoue, Polymer 40, 1465 (1999a)CrossRefGoogle Scholar
  37. S.A. Madbouly, T. Chiba, T. Ougizawa, T. Inoue, J. Macromol. Sci. Phys. B 38, 79 (1999b)CrossRefGoogle Scholar
  38. S.A. Madbouly, T. Chiba, T. Ougizawa, T. Inoue, Polymer 42, 1743 (2001)CrossRefGoogle Scholar
  39. L.T. Manzione, J.K. Gilliham, C.A. Mcpherson, J. Appl. Polym. Sci. 26, 889 (1981)CrossRefGoogle Scholar
  40. K. Matsumoto, M. Nagai, K. Hamakawa, S. Nishitsuji, T. Inoue, J. Appl. Polym. Sci.(2012). doi:10.1002/App.38764Google Scholar
  41. K. Mazich, S.H. Carr, J. Appl. Phys. 54, 5511 (1983)CrossRefGoogle Scholar
  42. A.I. Nakatani, H. Kim, Y. Takahashi, Y. Matsushita, A. Takano, B.J. Bauer, C.C. Han, J. Chem. Phys. 93, 795 (1990)CrossRefGoogle Scholar
  43. M. Okada, K. Fujimoto, T. Nose, Macromolecules 28, 1795 (1995)CrossRefGoogle Scholar
  44. M. Okamoto, T. Inoue, Polym. Eng. Sci. 33, 176 (1993)Google Scholar
  45. M. Okamoto, K. Shiomi, T. Inoue, Polymer 36, 87 (1995)CrossRefGoogle Scholar
  46. S. Ono, H. Isago, T. Ougizawa, Polym. Prep. Jpn 57, 3122 (2008)Google Scholar
  47. A. Onuki, K. Kawasaki, Ann. Phys. (N.Y.) 121, 456 (1979a)CrossRefGoogle Scholar
  48. A. Onuki, K. Kawasaki, Phys. Lett. 72, 233 (1979b)CrossRefGoogle Scholar
  49. A. Onuki, K. Yamazaki, K. Kawasaki, Ann. Phys. (N.Y.) 131, 217 (1981)CrossRefGoogle Scholar
  50. A. Onuki, in Taniguchi Conference on Polymer Research by Neutron Scattering, Kyoto, Japan, Nov 1989Google Scholar
  51. L. Pan, T. Inoue, H. Hayami, S. Nishikawa, Polymer 43, 337 (2002)CrossRefGoogle Scholar
  52. L. Park, J.W. Barlow, D.R. Paul, J. Polym. Sci., Phys. Ed. 30, 1021 (1992)CrossRefGoogle Scholar
  53. D. Sato, Y. Kadowaki, J. Ishibashi, S. Kobayashi, T. Inoue, e-J. Soft Mater. 3, 9 (2007)CrossRefGoogle Scholar
  54. T. Takebe, R. Sawaoka, T. Hashimoto, J. Chem. Phys. 91, 4369 (1989)CrossRefGoogle Scholar
  55. L.A. Utracki, Polym. Eng. Sci 22, 1166 (1982)CrossRefGoogle Scholar
  56. J.J. van Aartsen, Eur. Polym. J. 6, 919 (1970)CrossRefGoogle Scholar
  57. S. Visconti, R.H. Marchessault, Macromolecules 7, 913 (1974)CrossRefGoogle Scholar
  58. R. Wu, M.T. Shaw, R.A. Weiss, Polym. Mater. Sci. Eng. 65, 263 (1991)Google Scholar
  59. K. Yamanaka, T. Inoue, Polymer 30, 662 (1989)CrossRefGoogle Scholar
  60. K. Yamanaka, T. Inoue, J. Mater. Sci. 25, 241 (1990)CrossRefGoogle Scholar
  61. K. Yamanaka, Y. Takagi, T. Inoue, Polymer, 30, 1839 (1989)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Chemistry and Materials ScienceTokyo Institute of TechnologyMeguro-kuJapan
  2. 2.Department of Polymer Science and EngineeringYamagata UniversityYonezawaJapan

Personalised recommendations