Skip to main content

Estrogenic Endocrine-Disrupting Chemicals

  • Reference work entry

Synonyms

Environmental estrogens; Estrogen mimics; Xenoestrogens

Definition

Endocrine-disrupting chemicals (EDCs) are compounds that alter the hormonal systems of organisms. Estrogenic endocrine-disrupting chemicals (e-EDCs) or environmental estrogens are a subgroup of EDCs that modulate the action of the female hormone 17β-estradiol (E2). e-EDCs can be natural and synthetic compounds and have been detected in food, air, water, and soil.

Estrogenic EDCs are either hormonal estrogens or chemicals which mimic or induce estrogen-like responses in exposed organisms. These compounds depict varying degrees of potency ranging from strongly active compounds to compounds with weak estrogenic activity (Campbell et al. 2006). They are usually less potent compared to E2 with the exception of ethynylestradiol-17β.

Non-estrogenic EDCs can influence hormone metabolism in different ways and still induce estrogenicity. This may occur through antiandrogenic compounds which would indirectly increase...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen E, Doisy EA (1923) An ovarian hormone: preliminary report on its localization, extraction and partial purification and action in test animals. J Amer Med Assoc 81:819–821

    CrossRef  CAS  Google Scholar 

  • Andersen HR, Andersson AM, Arnold SF et al (1999) Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect 107:89–108

    CAS  Google Scholar 

  • Awais M, Sato M, Sasaki K et al (2004) A genetically encoded fluorescent indicator capable of discriminating estrogen agonists form antagonists in living cells. Anal Chem 76:2181–2186

    CrossRef  CAS  Google Scholar 

  • Baker VA (2001) Session 5: Hot topics in in vitro toxicology. Long-term effects, hormonal effects, endocrine disrupters. Endocrine disrupters – testing strategies to assess human hazard. Toxicol In Vitro 15:413–419

    CrossRef  CAS  Google Scholar 

  • Baker VA, Hepburn PA, Kennedy SJ et al (1999a) Assessing the oestrogenicity of phytosterols using a combination of in vivo and in vitro assays. Food Chem Toxicol 37:13–22

    CrossRef  CAS  Google Scholar 

  • Baker VA, Jones PA, Fletcher ST et al (1999b) Butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are not oestrogenic using a trio of in vivo and in vitro assays. Hum Exp Toxicol 18:532

    Google Scholar 

  • Baker VA, Jones PA, Lea LJ (2000) Assessment of the oestrogenic activity of benzophenone sunscreen agents. Toxicologist 54:262

    Google Scholar 

  • Beresford N, Routledge EJ, Harris CA et al (2000) Issues arising when interpreting results from an in vitro assay for estrogenic activity. Toxicol Appl Pharmacol 162:22–33

    CrossRef  CAS  Google Scholar 

  • Bitman J, Cecil HC, Harris SJ et al (1968) Estrogenic activity of o, p’-DDT in the mammalian uterus and avian oviduct. Science 162:371–372

    CrossRef  CAS  Google Scholar 

  • Burlington H, Lindeman V (1950) Effect of DDT on testes and secondary characters of white leghorn cockerels. P Soc Exp Biol Med 74:48–51

    CrossRef  CAS  Google Scholar 

  • Campbell CG, Borglin SE, Green FB et al (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review. Chemosphere 65:1265–1280

    CrossRef  CAS  Google Scholar 

  • Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    CrossRef  CAS  Google Scholar 

  • Crisp TM, Clegg ED, Cooper RL et al (1998) Environmental endocrine disruption: an effect assessment and analysis. Environ Health Perspect 106:11–56

    CAS  Google Scholar 

  • Dodds EC, Lawson W (1938) Molecular structure in relations to oestrogenic activity. Compounds without a phenanthrene nucleus. P Roy Soc Lond 125:222–232

    CrossRef  CAS  Google Scholar 

  • Dorfman RI, Dorfman AS (1954) Estrogen assays using the rat uterus. Endocrinol 55:65–69

    CrossRef  CAS  Google Scholar 

  • ECETOC (1996) ECETOC Monograph No. 33. Environmental oestrogens – A Compendium of test methods. ECETOC, Brussels

    Google Scholar 

  • EDSTAC (1998) Final Report from the Endocrine Disruptor Screening and Testing Advisory Committee. Aug 1998

    Google Scholar 

  • Fan Y, Zhang M, Da S-L et al (2005) Determination of endocrine disruptors in environmental waters using poly (acrylamidevinylpyridine) monolithic capillary for in-tube solid-phase micro extraction coupled to high-performance liquid chromatography with fluorescence detection. Analyst 130:1065–1069

    CrossRef  CAS  Google Scholar 

  • Fenner-Crisp PA, Maciorowski AF, Timm GE (2000) The endocrine disruptor screening program developed by the U.S. Environmental Protections Agency. Ecotoxicology 9:85–91

    CrossRef  CAS  Google Scholar 

  • Folmar LC, Hemme M, Hemmer R et al (2000) Comparative estrogenicity of estradiol, ethynyl estradiol and diethylstilbestrol in an in vivo male sheepshead minnow (cyprinodon variegatus) vitellogenin bioassay. Aquat Toxicol 49:77–88

    CrossRef  CAS  Google Scholar 

  • Folmar LC, Hemmer MJ, Denslow ND et al (2002) A comparison of the estrogenic potencies of estradiol, ethynylestradiol, diethylstilbestrol, nonylphenol and methoxychlor in vivo and in vitro. Aquat Toxicol 60:101–110

    CrossRef  CAS  Google Scholar 

  • Gaido KW, Leonard LS, Lovell S et al (1997a) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol Appl Pharmacol 143:205–212

    CrossRef  CAS  Google Scholar 

  • Gaido KW, McDonnell DP, Korach KS et al (1997b) Estrogenic activity of chemical mixtures: is there synergism? CIIT activities. Chem Ind Inst Toxicol 2:1–7

    Google Scholar 

  • Gascón J, Oubinã A, Barceló D (1997) Detection of endocrine disrupting pesticides by enzyme-linked immunosorbent assay (ELISA): application to atrazine. Trend Anal Chem 16:554–562

    CrossRef  Google Scholar 

  • Geisy JP, Hilscherova K, Jones PD et al (2002) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Mar Poll Bull 45:3–16

    CrossRef  Google Scholar 

  • Gray LE Jr, Kelce WR, Wiese T (1997) Endocrine screening methods workshop report: detection of estrogenic and androgenic hormonal and anti-hormonal activity for chemicals that act via receptor or steroidogenic enzyme mechanisms. Reprod Toxicol 11:719–750

    CrossRef  CAS  Google Scholar 

  • Hackenburg R, Hofman J, Holzel F et al (1988) Stimulatory effects of androgen and antiandrogen on the in vitro proliferation of human mammary carcinoma cells. J Cancer Res Clin Oncol 114:593–601

    CrossRef  Google Scholar 

  • Hanselman TA, Graetz DA, Wilkie AC (2003) Manure-borne estrogens as potential environmental contaminants: a review. Environ Sci Technol 24:5471–5478

    CrossRef  CAS  Google Scholar 

  • Heisterkamp I, Ganrass J, Ruck W (2004) Bioassay-directed chemical analysis utilizing LC-MS: a tool for identifying estrogenic compounds in water samples. Anal Bio-anal Chem 378:709–715

    CrossRef  CAS  Google Scholar 

  • Hisaw FL (1959) Comparative effectiveness of estrogens on fluid imbibition and growth of the rat’s uterus. Endocrinol 54:276–289

    CrossRef  Google Scholar 

  • Holmes P, Humfrey C, Scullion M (1998) Appraisal of test methods for sex-hormone disrupting chemicals capable of affecting the reproductive process (website: http://www.oecd.org/ehs/test/monos.htm). Medical Research Council Institute for Environment and Health. Leicester, UK

  • Huang CH, Sedlak DL (2001) Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environ Toxicol Chem 20:133–139

    CrossRef  CAS  Google Scholar 

  • Ireland JS, Mukku VR, Robison AK et al (1980) Stimulation of uterine deoxyribonucleic acid synthesis by 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethane (o, p0-DDT). Biochem Pharmacol 29:1469–1474

    CrossRef  CAS  Google Scholar 

  • Isselbacher KJ, Braunwald AB, Wilson JD et al (1994) Harrison’s Principles of internal medicine, 13th edn. McGraw-Hill, New York

    Google Scholar 

  • Jensen EV, Jacobson HI (1960) Fate of steroid estrogens in target tissues. In: Pincus G, Vollmer EP (eds) Biological activities of steroids in relation to cancer. Academic, New York, pp 161–178

    Google Scholar 

  • Jones PA, Baker VA, Irwin AJE et al (1997) Modulation of MCF-7 cell proliferative responses by manipulation of assay conditions. Toxicol In Vitro 11:769–773

    CrossRef  CAS  Google Scholar 

  • Jones PA, Baker VA, Irwin AJE et al (1998) Interpretation of the in vitro proliferation response of MCF-7 cells to potential oestrogens and non-oestrogenic substances. Toxicol In Vitro 12:373–382

    CrossRef  CAS  Google Scholar 

  • Joyeux A, Balauer P, Germain P et al (1997) Engineered cell lines as a tool for monitoring biological activity of hormone analogs. Analyt Biochem 249:119–130

    CrossRef  CAS  Google Scholar 

  • Keith LH (1998) Environmental endocrine disruptors. Pure Appl Chem 70:2319–2326

    CrossRef  CAS  Google Scholar 

  • Kolodziej EP, Harter T, Sedlak DL (2004) Dairy wastewater, aquaculture, and spawning fish as sources of steroid hormones in the aquatic environment. Environ Sci Technol 38:6377–6384

    CrossRef  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    CrossRef  CAS  Google Scholar 

  • Korach KS, McLachlan JA (1995) Techniques for detection of oestrogenicity. Environ Health Perspect 103:5–8

    Google Scholar 

  • Kortenkamp A (2007) Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect 115:98–105

    CrossRef  Google Scholar 

  • Kuiper GG, Lemmen JG, Carlsson B et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinol 139:4252–4263

    CrossRef  CAS  Google Scholar 

  • Kurauchi K, Nakaguchi Y, Tsutsumi M et al (2005) In vivo visual reporter system for detection of estrogen-like substances by transgenic medaka. Environ Sci Technol 39:2762–2768

    CrossRef  CAS  Google Scholar 

  • Legler J, Zeinstra LM, Schuitemaker F et al (2002) Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol 36:4410–4415

    CrossRef  CAS  Google Scholar 

  • Lintelmann J, Katayama A, Kurihara N et al (2003) Endocrine disruptors in the environment. Pure Appl Chem 75:631–681

    CrossRef  CAS  Google Scholar 

  • Lopez de Alda MJ, Barcelo D (2001) Review of analytical methods for the determination of estrogens and progestogens in waste waters. Fresenius J Anal Chem 371:437–447

    CrossRef  CAS  Google Scholar 

  • Mills LJ, Chichester C (2005) Review of evidence: Are endocrine-disrupting chemicals in the aquatic environment impacting fish populations. Sci Total Environ 343:1–34

    CrossRef  CAS  Google Scholar 

  • Murata M, Nakayama M, Irie H et al (2001) Novel biosensor for the rapid measurement of estrogen based on a ligand-receptor interaction. Anal Sci 17:387–390

    CrossRef  CAS  Google Scholar 

  • Neubert D (1997) Vulnerability of the endocrine system to xenobiotic influence. Regul Toxicol Pharmacol 26:9–21

    CrossRef  CAS  Google Scholar 

  • Odum J, Lefevre PA, Tittensor S et al (1997) The rodent uterotrophic assay: critical protocol features, studies with nonylphenols, and comparison with a yeast estrogenicity assay. Regul Toxicol Pharmacol 25:176–188

    CrossRef  CAS  Google Scholar 

  • Odum J, Tittensor S, Ashby J (1998) Limitations of the MCF-7 cell proliferation assay for detecting xenobiotic oestrogens. Toxicol In Vitro 12:273

    CrossRef  CAS  Google Scholar 

  • Osborne CK, Hobbs K, Trent JM (1987) Biological differences between MCF-7 cells from different laboratories. Breast Cancer Res Treatment 9:111–121

    CrossRef  CAS  Google Scholar 

  • Osborne CK, Clemmons DR, Arteaga CL (1990) Regulation of breast cancer growth by insulin-like growth factors. J Steroid Biochem Molec Biol 37:805–809

    CrossRef  CAS  Google Scholar 

  • Petrović M, Barceló D (2000) Determination of anionic and non-ionic surfactants, their degradation products, and endocrine-disrupting compounds in sewage sludge by liquid chromatography/mass spectrometry. Anal Chem 72:4560–4567

    CrossRef  CAS  Google Scholar 

  • Petrović M, Eljarrat E, Lopez de Alda M et al (2002) Recent advances in the mass spectrometric analysis related to endocrine disrupting compounds in aquatic environmental samples. J Chromat 974:23–51

    CrossRef  Google Scholar 

  • Rodriquez-Mozaz S, Marco MP, Lopez de Alda MJ et al (2004) Biosensors for environmental monitoring of endocrine disruptors: a review article. Anal Bioanal Chem 378:588–598

    CrossRef  CAS  Google Scholar 

  • Routledge EJ, Parker J, Odum J et al (1998) Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicol Appl Pharmacol 153:12–19

    CrossRef  CAS  Google Scholar 

  • Savouret JF, Misrahi M, Milgrom E (1990) Molecular action of progesterone. Int J Biochem 22:579–594

    CrossRef  CAS  Google Scholar 

  • Scrimshaw MD, Lester JN (2004) In-vitro assays for determination of oestrogenic activity. Anal Bioanal Chem 378:576–581

    CrossRef  CAS  Google Scholar 

  • Snyder SA, Westerhoff P, Yoon Y et al (2003) Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ Eng Sci 20:449–469

    CrossRef  CAS  Google Scholar 

  • Soto AM, Lin T-M, Justicia H et al (1992) An “in culture” assay to assess the estrogenicity of xenobiotics (E-screen). Adv Mod Environ Toxicol 21:295–309

    CAS  Google Scholar 

  • Soto AM, Sonnenschein C, Chung KL et al (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103:113–122

    CAS  Google Scholar 

  • Soto AM, Calabro JM, Prechtl NV et al (2004) Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in eastern Nebraska, USA. Environ Health Perspect 112:346–352

    CrossRef  CAS  Google Scholar 

  • Staples CA, Dom PB, Klecka GM et al (1998) A review of the environmental fate, effects, and exposures of bisphenol a. Chemosphere 36:2149–2173

    CrossRef  CAS  Google Scholar 

  • Sumpter JP (1995) Feminized responses in fish to environmental estrogens. Toxicol Lett 82–83:737–742

    CrossRef  Google Scholar 

  • Tashiro Y, Takemura A, Fujii H et al (2003) Livestock wastes as a source of estrogens and their effects on wildlife of Manko tidal flat, Okinawa. Mar Poll Bull 47:143–147

    CrossRef  CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (1997) Special report on environmental endocrine disruption: an effects assessment and analysis. Office of Research and Development, Washington, DC. EPA/630/R-96/012

    Google Scholar 

  • United States Environmental Protection Agency (US EPA) (2005) Final detailed review paper on steroidogenesis screening assays and endocrine disruptors. EPA contract number 68-W-01-023, Work Assignments 2–6 and 5–5, Task 3

    Google Scholar 

  • Villalobos M, Olea N, Brotons JA et al (1995) The E-screen assay: a comparison of different MCF7 cell stocks. Environ Health Perspect 103:844–850

    CrossRef  CAS  Google Scholar 

  • Vom Saal FS, Cooke PS, Buchanan DL et al (1998) A physiologically based approach to the study of bisphenol a and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health 14:239–260

    CAS  Google Scholar 

  • WHO/IPCS (2002) Global assessment of the state-of-the-science of endocrine disruptors. World Health Organization/International Program on Chemical Safety. WHO/PCS/EDC/02.2. Available at: www.who.int/pcs/emerg_site/edc/global_edc_ch5.pdf

  • Wozei E (2004) Investigating the reduction of estrogenic activity by activated sludge. Doctoral thesis, University of California, Berkeley, p 155

    Google Scholar 

  • Yang RSH (1994) Toxicology of chemical mixtures: case studies, mechanisms, and novel approaches. Academic, London

    Google Scholar 

  • Ying GG, Kookana R (2002) Endocrine disruption: an Australian perspective. Aus Water Assoc J Water 29:42–45

    Google Scholar 

  • Ying GG, Williams B, Kookana R (2002) Environmental fate of alkylphenols and alkylphenol ethoxylates – a review. Environ Intern 28:215–226

    CrossRef  CAS  Google Scholar 

  • Zhang F, Bartels MJ, Brodeur JC et al (2004) Quantitation of 17 alpha-ethinylestradiol in aquatic samples using liquid–liquid phase extraction, dansyl derivatization, and liquid chromatography/positive electrospray tandem mass spectrometry. Rapid Comm Mass Spectrom 18:2739–2742

    CrossRef  CAS  Google Scholar 

  • Zhihong M, Xiaohui L, Weiling F (1999) A new sandwich-type assay of estrogen using piezoelectric biosensor immobilized with estrogen response element. Analyt Comm 36:281–283

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Cornelius Swart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Swart, J.C., Pool, E.J. (2013). Estrogenic Endocrine-Disrupting Chemicals. In: Férard, JF., Blaise, C. (eds) Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5704-2_45

Download citation