A “stellar wind” is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star’s radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in “superwinds” that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ∼ ​​ 1. 4M . The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star’s hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star’s own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or “bubbles” in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various dynamical driving processes and what they imply for key wind parameters like the wind flow speed and mass loss rate.


Solar Wind Coronal Hole Mass Loss Rate Stellar Wind Stellar Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott, D. C. 1980, ApJ, 242, 1183ADSCrossRefGoogle Scholar
  2. Abbott, D. C. 1982, ApJ, 259, 282ADSCrossRefGoogle Scholar
  3. Allen, C. W. 1973, (3rd ed, London: University of London, Athlone Press)Google Scholar
  4. Biermann, L. 1951, Kometenschweife und solare Korpuskularstrahlung. Zeitschrift für Astrophysik, 29, 274ADSGoogle Scholar
  5. Bjorkman, J. E., & Cassinelli, J. 1993, ApJ, 409, 429ADSCrossRefGoogle Scholar
  6. Breitschwerdt, D., & Komossa, S. 2000, Galactic fountains and galactic winds. Ap&SS, 272, 3–13ADSzbMATHCrossRefGoogle Scholar
  7. Calvet, N. 2004, Outflows and accretion in young stellar objects, in Stars as Suns : Activity, Evolution and Planets, Proceedings of the 219th Symposium of the International Astronomical Union Held During the IAU General Assembly XXV, Sydney, ed. A. K. Dupree, & A. O. Benz (San Francisco, CA: ASP), 599Google Scholar
  8. Castor, J. I., Abbott, D. C., & Klein, R. 1975, ApJ, 195, 157ADSCrossRefGoogle Scholar
  9. Chamberlain, J. W. 1961, ApJ, 133, 675MathSciNetADSCrossRefGoogle Scholar
  10. Chapman, S. 1961, Space Astrophys, 133, 675CrossRefGoogle Scholar
  11. Cohen, D. H. 2008, IAU Symposium, 250, 17ADSGoogle Scholar
  12. Cox, D. P., & Tucker, W. H. 1969, ApJ, 157, 1157ADSCrossRefGoogle Scholar
  13. Cranmer, S. R., et al. 1999, ApJ, 511, 481ADSCrossRefGoogle Scholar
  14. Cranmer, S. R. 2000, ApJ, 532, 1197ADSCrossRefGoogle Scholar
  15. Cranmer, S. R. 2009, Coronal holes. Living Rev Solar Phys, 6, 3. URL:
  16. Cranmer, S. R., & Owocki, S. P. 1996, Hydrodynamical simulations of corotating interaction regions and discrete absorption components in rotating O-star winds. ApJ, 462, 469ADSCrossRefGoogle Scholar
  17. Cranmer, S. R., & Owocki, S. P. 1999, ApJ, 440, 308ADSCrossRefGoogle Scholar
  18. de Koter, A., Vink, J. S., & Muijres, L. 2008, in Clumping in Hot-Star Winds, 47, Proceedings of an International Workshop Held in Potsdam, ed. W. -R. Hamann, A. Feldmeier, L. M. Oskinova (Potsdam). ISBN 978-3-940793-33-1Google Scholar
  19. Dessart, L., & Owocki, S. P. 2003, Two-dimensional simulations of the line-driven instability in hot-star winds. A&A, 406, L1–L4ADSCrossRefGoogle Scholar
  20. Dessart, L., & Owocki, S. P. 2005, 2D simulations of the line-driven instability in hot-star winds. II. Approximations for the 2D radiation force. A&A, 437, 657–666ADSCrossRefGoogle Scholar
  21. Dupree, A. K. 2004, Winds from cool stars, in Stars as Suns : Activity, Evolution and Planets, Proceedings of the 219th Symposium of the International Astronomical Union Held During the IAU General Assembly XXV, Sydney, ed. A. K. Dupree, & A. O. Benz (San Francisco, CA: ASP), 623Google Scholar
  22. Feldmeier, A. 1995, A&A, 299, 523ADSGoogle Scholar
  23. Friend, D. B., & Abbott, D. C. 1986, 311, 701Google Scholar
  24. Friend, D. B., & Castor, J. C. 1983, 272, 259Google Scholar
  25. Fullerton, A. W. 2003, Cyclical wind variability from O-type stars, in Magnetic Fields in O, B and A Stars: Origin and Connection to Pulsation, Rotation and Mass Loss, Proceedings of the Conference Held 27 November - 1 December, 2002 at University of North-West, Mmabatho, Vol. 305, ed. L. A. Balona, H. F. Henrichs, & R. Medupe (San Francisco: ASP), 333Google Scholar
  26. Fullerton, A. W., Massa, D. L., & Prinja, R. K. 2006, The discordance of mass-loss estimates for galactic O-type stars. ApJ, 637, 1025–1039ADSCrossRefGoogle Scholar
  27. Gayley, K. G. 1995, ApJ, 454, 410ADSCrossRefGoogle Scholar
  28. Gayley, K. G., Owocki, S. P., & Cranmer, S. R. 1995, ApJ, 442, 296ADSCrossRefGoogle Scholar
  29. Groenewegen, M. A. T., & Lamers, H. J. G. L. M. 1989, The winds of O-stars. I – an analysis of the UV line profiles with the SEI method. A&AS, 79, 359Google Scholar
  30. Groh, J. H., Madura, T. I., Owocki, S. P., Hillier, D. J., & Weigelt, G. 2010, Is Eta Carinae a fast rotator, and how much does the companion influence the inner wind structure? ApJL, 716, L223–L228ADSCrossRefGoogle Scholar
  31. Hamann, W.-R. 1996, Spectral analysis and model atmospheres of WR central stars (Invited paper). Ap&SS, 238, 31–42ADSGoogle Scholar
  32. Hamann, W. R., Koesterke, L., & Wessolowski, U. 1995, A&A, 299, 151ADSGoogle Scholar
  33. Hamann, W.-R., Gräfener, G., & Koesterke, L. 2003, WR central stars (invited review), in Planetary Nebulae: Their Evolution and Role in the Universe, Proceedings of the 209th Symposium of the International Astronomical Union held at Canberra, ed. S.Kwok, M. Dopita, & R. Sutherland (ASP)Google Scholar
  34. Hamann, W-R., Feldmeier, A., & Oskinova, L. M. 2008, Clumping in hot-star winds, in Clumping in Hot-Star Winds: Proceedings of an International Workshop Held in Potsdam, ed. W. R. Hamann, A. Feldmeier, & L. M. Oskinova. ISBN 978-3-940793-33-1Google Scholar
  35. Hansen, C. J., Kawaler, S. D., & Trimble, V. 2004, Stellar Interiors: Physical Principles, Structure, and Evolution (2nd ed.; New York: Springer)Google Scholar
  36. Hartmann, L., & MacGregor, K. B. 1980, Momentum and energy deposition in late-type stellar atmospheres and winds. ApJ, 242, 260–282ADSCrossRefGoogle Scholar
  37. Howarth, I. D., & Prinja, R. K. 1989, The stellar winds of 203 Galactic O stars – A quantitative ultraviolet survey. ApJS, 69, 527–592ADSCrossRefGoogle Scholar
  38. Holzer, T. E., & MacGregor, K. B. 1985, Mass loss mechanisms for cool, low-gravity stars, in IN: Mass Loss From Red Giants; Proceedings of the Conference, Los Angeles (Dordrecht: D. Reidel Publishing Co.), 229–255Google Scholar
  39. Hillier, D. J. 2003, Advances in modeling of Wolf-Rayet stars, in A Massive Star Odyssey: From Main Sequence to Supernova, Proceedings of IAU Symposium #212, Held 24–28 June 2001 in Lanzarote, Canary island, ed. K. van der Hucht, A. Herrero, & C. Esteban (San Francisco: ASP), 70Google Scholar
  40. Hillier, D. J., & Miller, D. L. 1999, Constraints on the evolution of massive stars through spectral analysis. I. The WC5 star HD 165763. ApJ, 519, 354–371ADSCrossRefGoogle Scholar
  41. Holzer, T. E., Fla, T., & Leer, E. 1983, Alfven waves in stellar winds. ApJ, 275, 808–835ADSCrossRefGoogle Scholar
  42. Holzer, T. E., & MacGregor, K. B. 1985, Mass Loss from Red Giants, 117, 229ADSCrossRefGoogle Scholar
  43. Holzer, T. E. 1987, Theory of winds from cool stars, in IN: Circumstellar Matter; Proceedings of the IAU Symposium, Heidelberg (Dordrecht: D. Reidel Publishing Co.), 289–305Google Scholar
  44. Kohl, J. L., Esser, R., Gardner, L. D., Habbal, S., Daigneau, P. S., Dennis, E. F., Nystrom, G. U., Panasyuk, A., Raymond, J. C., Smith, P. L., Strachan, L., van Ballegooijen, A. A., Noci, G., Fineschi, S., Romoli, M., Ciaravella, A., Modigliani, A., Huber, M. C. E., Antonucci, E., Benna, C., Giordano, S., Tondello, G., Nicolosi, P., Naletto, G., Pernechele, C., Spadaro, D., Poletto, G., Livi, S., von der Lühe, O., Geiss, J., Timothy, J. G., Gloeckler, G., Allegra, A., Basile, G., Brusa, R., Wood, B., Siegmund, O. H. W., Fowler, W., Fisher, R., & Jhabvala, M. 1995, The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Solar Phys, 162, 313–356ADSCrossRefGoogle Scholar
  45. Kohl, J. L., Esser, R., Cranmer, S. R., Fineschi, S., Gardner, L. D., Panasyuk, A. V., Strachan, L., Suleman, R. M., Frazin, R. A., & Noci, G. 1999, ApJ, 510, L59ADSCrossRefGoogle Scholar
  46. Koninx, J. -P. M., & Pijpers, F. P. 1992, The applicability of the linearized theory of sound-wave driven winds. A&A, 265, 183–194ADSGoogle Scholar
  47. Kudritzki, R. P., Lennon, D. J., & Puls, J. 1995, Quantitative Spectroscopy of luminous blue stars in distant galaxies. in Science with the VLT, eds. J. R. Walsh & I. J. Danziger (Berlin: Springer), 246Google Scholar
  48. Lamers, H. J. G. L. M., & Cassinelli, J. 1999, Introduction to Stellar Winds (Cambridge/New York: Cambridge University Press)CrossRefGoogle Scholar
  49. Lamers, H. J. G. L. M., Cerruti-Sola, M., & Perinotto, M. 1987, The ‘SEI’ method for accurate and efficient calculations of line profiles in spherically symmetric stellar winds. ApJ, 314, 726–738ADSCrossRefGoogle Scholar
  50. Leer, E., & Holzer, T. E. 1979, Solar Phys., 63, 143ADSCrossRefGoogle Scholar
  51. Leer, E., Holzer, T. E., & Fla, T. 1982, Acceleration of the solar wind. SSRv, 33, 161–200ADSGoogle Scholar
  52. Lépine, S., & Moffat, A. F. J. 1999, ApJ, 514, 909ADSCrossRefGoogle Scholar
  53. Li, A., in ”The Spectral Energy Distribution of Gas-Rich Galaxies: Confronting Models with Data, edited by C.C. Popescu & R.J. Tuffs, AIP Conf. Proc. 761, pp. 123–133Google Scholar
  54. Lucy, L. B. 1982, ApJ, 255, 278ADSCrossRefGoogle Scholar
  55. Lucy, L. B. 1984, 284, 351Google Scholar
  56. MacGregor, K. B., Hartmann, L., & Raymond, J. C. 1979, ApJ, 231, 514ADSCrossRefGoogle Scholar
  57. Maeder, A., & Meynet, G. 2000, ARA&A, 38, 143ADSCrossRefGoogle Scholar
  58. Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., & Pantellini, F. 2010, in Twelfth International Solar Wind Conference. AIP Conference Proceedings, Vol. 1216Google Scholar
  59. McComas, D. J., Bame, S. J., Barraclough, B. L., Feldman, W. C., Funsten, H. O., Gosling, J. T., Riley, P., Skoug, R., Balogh, A., Forsyth, R., et al. 1998, Ulysses’ return to the slow solar wind. GeoRL, 25, 1–4ADSGoogle Scholar
  60. Meyer-Vernet, N. 2007, Basics of the Solar Wind (Cambridge, UK: Cambridge University Press). ISBN-10 0-521-81420-0 (HB); ISBN-13 978-0-521-81420-1 (HB)Google Scholar
  61. Mihalas, D. 1978, (San Francisco: W. H. Freeman and Co.), 650Google Scholar
  62. Mihalas, D. 1978, Stellar Atmospheres (San Francisco: Freeman)Google Scholar
  63. Mullan, D. J. 1984, Corotating interaction regions in stellar winds. ApJ, 283, 303–312ADSCrossRefGoogle Scholar
  64. Newkirk, G. 1967, Structure of the solar corona. Ann Rev Astron Astrophys, 5, 213–266ADSCrossRefGoogle Scholar
  65. Oey, M. S., & Clarke, C. J. 2007, Massive stars: feedback effects in the local universe. eprint arXiv:astro-ph/0703036Google Scholar
  66. Owocki, S. P. 1999, Co-rotating interaction regions in 2D hot-star wind models with line-driven instability, in IAU Colloq. 169: Variable and Non-spherical Stellar Winds in Luminous Hot Stars. Lecture Notes in Physics, Vol 523, ed. B. Wolf, O. Stahl, & A. W. Fullerton (Berlin: Springer), 294Google Scholar
  67. Owocki, S. 2001, Radiatively driven stellar winds from hot stars, in Encyclopedia of Astronomy and Astrophysics, ed. P. Murdin, article 1887 (Bristol: Institute of Physics Publishing)Google Scholar
  68. Owocki, S. 2004, Stellar wind mechanisms and instabilities, in Evolution of Massive Stars, Mass Loss and Winds, Held in Aussois and Oléron. EAS Publications Series, Vol. 13. doi:10.1051/eas:2004055Google Scholar
  69. Owocki, S. P., & Puls, J. 1996, Nonlocal escape-integral approximations for the line force in structured line-driven stellar winds. ApJ, 462, 894ADSCrossRefGoogle Scholar
  70. Owocki, S. P., & Puls, J. 1999, Line-driven stellar winds: the dynamical role of diffuse radiation gradients and limitations to the Sobolev approach. ApJ, 510, 355–368ADSCrossRefGoogle Scholar
  71. Owocki, S. P., & ud-Doula, A. 2004, The effect of magnetic field tilt and divergence on the mass flux and flow speed in a line-driven stellar wind. ApJ, 600, 1004–1015Google Scholar
  72. Owocki, S. P., Castor, J. I., & Rybicki, G. B. 1988, ApJ, 335, 914ADSCrossRefGoogle Scholar
  73. Owocki, S. P., Cranmer, S. R., & Blondin, J. 1994, ApJ, 424, 887ADSCrossRefGoogle Scholar
  74. Owocki, S. P., Cranmer, S. R., & Gayley, K. G. 1996, ApJ, 472, L115ADSCrossRefGoogle Scholar
  75. Owocki, S. P., Gayley, K. G., & Shaviv, N. J. 2004, A porosity-length formalism for photon-tiring-limited mass loss from stars above the Eddington limit. ApJ, 616, 525–541ADSCrossRefGoogle Scholar
  76. Owocki, S. P., & Rybicki, G. B. 1984, ApJ, 284, 337ADSCrossRefGoogle Scholar
  77. Owocki, S. P., & Rybicki, G. B. 1985, ApJ, 299, 265ADSCrossRefGoogle Scholar
  78. Parker E. N. 1963, Interplanetary Dynamical Processess (New York: Interscience Publishers)Google Scholar
  79. Pauldrach, A. W. A., Puls, J., & Kudritzki, R. P. 1986, A&A, 164, 86ADSzbMATHGoogle Scholar
  80. Proga, D. 2007, Theory of winds in AGNs, in The Central Engine of Active Galactic Nuclei, ASP Conference Series, Vol. 373, Proceedings of the Conference Held 16-21 October, 2006 at Xi’an Jioatong University, Xi’an, ed. L. C. Ho, & J. -M. Wang (ASP), 267Google Scholar
  81. Puls, J., Kudritzki, R. P., Herrero, A., Pauldrach, A. W. A., Haser, S. M., Lennon, D. J., Gabler, R., Voels, S., Vilchez, J. M., & Feldmeier, A. 1996, A&A, 305, 171ADSGoogle Scholar
  82. Puls, J., Markova, N., Scuderi, S., Stanghellini, C., Taranova, O. G., Burnley, A. W. & Howarth, I. D. 2006, Bright OB stars in the Galaxy. III. Constraints on the radial stratification of the clumping factor in hot star winds from a combined Hα, IR and radio analysis. A&A, 454, 625–651ADSCrossRefGoogle Scholar
  83. Puls, J., Vink, J. S., & Najarro, F. 2008, Mass loss from hot massive stars. A&ARv, 16, 209–325ADSCrossRefGoogle Scholar
  84. Raymond, J. C., Cox, D. P., & Smith, B. W. 1976, ApJ, 204, 290ADSCrossRefGoogle Scholar
  85. Scholz, A. 2009, Stellar spindown: from the ONC to the sun, in Cool Stars, Stellar Systems And The Sun: Proceedings of the 15th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun. AIP Conference Proceedings, Vol. 1094. doi:10.1063/1.3099189Google Scholar
  86. Smith, N., Davidson, K., Gull, T. R., Ishibashi, K., Hillier, D. J. 2003, ApJ, 586, 432ADSCrossRefGoogle Scholar
  87. Sobolev, V. V. 1960, Moving Envelopes of Stars (Cambridge, MA: Harvard Univ. Press)Google Scholar
  88. Spitzer, L. 1962, Physics of Fully Ionized Gases (2nd ed; New York: Interscience)Google Scholar
  89. Townsend, R. H. D., Owocki, S. P., & Howarth, I. D. 2004, Be-star rotation: how close to critical? MNRAS, 350, 189–195ADSCrossRefGoogle Scholar
  90. Van Loo, S. 2005, Non-thermal radio emission from single hot stars. PhD thesis, Katholieke Universiteit LeuvenGoogle Scholar
  91. van Boekel, R., Kervella, P., Schoeller, M., Herbst, T., Brandner, W., de Koter, A., Waters, L., Hillier, D. J., Paresce, F., Lenzen, R., & Lagrange, A. -M. 2003, A&A, 410, L37ADSCrossRefGoogle Scholar
  92. von Zeipel, H. 1924, MNRAS, 84, 665ADSGoogle Scholar
  93. Vink, J. S. 2008, Mass loss and evolution of hot massive stars, in The Art of Modeling Stars in the 21st Century, Proceedings of the International Astronomical Union. IAU Symposium, Vol. 252, 271–281. doi:10.1017/S1743921308023016ADSCrossRefGoogle Scholar
  94. Weber, E. J., & Davis, L., Jr. 1967, The angular momentum of the solar wind. ApJ, 148, 217–227ADSCrossRefGoogle Scholar
  95. Willson, L. A. 2000, Mass loss from cool stars: impact on the evolution of stars and stellar populations. ARA&A, 38, 573–611ADSCrossRefGoogle Scholar
  96. Willson, L. A. 2008, Deathzones and exponents: a different approach to incorporating mass loss in stellar evolution calculations, in The Art of Modeling Stars in the 21st Century, Proceedings of the International Astronomical Union. IAU Symposium, Vol. 252, 189–195. doi:10.1017/S1743921308022758MathSciNetADSCrossRefGoogle Scholar
  97. Withbroe, G. L. 1988, The temperature structure, mass, and energy flow in the corona and inner solar wind. ApJ, 325, 442–467ADSCrossRefGoogle Scholar
  98. Withbroe, G. L. 1989, The solar wind mass flux. ApJ, 337, L49–L52ADSCrossRefGoogle Scholar
  99. Wood, B.E., 2004, Astrospheres and solar-like stellar winds. Living Rev Solar Phys, 1, lrsp-2004-2Google Scholar
  100. Wright, A. E., & Barlow, M. J. 1975, The radio and infrared spectrum of early-type stars undergoing mass loss. MNRAS, 170, 41–51ADSGoogle Scholar
  101. Zirker, J. 1977, Coronal Holes & High-speed Wind Streams (Boulder : Colorado Associated University Press)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Stan Owocki
    • 1
  1. 1.Bartol Research Institute, Department of Physics and AstronomyUniversity of ColoradoNewarkDE, USA

Personalised recommendations