Gamma-Ray Emission of Supernova Remnants and the Origin of Galactic Cosmic Rays

  • F. A. Aharonian
Reference work entry


The recent surveys of the Milky Way with space and ground-based gamma-ray detectors revealed hundreds of high energy (HE) and tens of very high energy (VHE) gamma-ray emitters representing several galactic source populations – supernova remnants, giant molecular clouds, star forming regions, pulsars, pulsar wind nebulae, binary systems. The major fraction of these objects remains however unidentified. In this chapter I discuss the astrophysical implications of VHE gamma-ray observations of supernova remnants (SNRs) in the context of the origin of galactic cosmic rays. These observations confirm the earlier theoretical predictions of effective acceleration of multi-TeV particles in young SNRs by strong shock waves. The interpretation of VHE gamma-ray data from several prominent representatives of young SNRs within the so-called hadronic models requires hard energy spectra of protons extending to 100 TeV, with total energy released in relativistic protons and nuclei as large as 1050 erg. Formally, this can be considered as an observational proof of the so-called SNR paradigm of the origin of galactic cosmic rays. However, the hadronic models are not free of problems related to interpretation of multi-wavelength properties of these objects. Moreover, in most of the cases the gamma-ray data can be explained by the inverse Compton scattering of electrons which are responsible also for the synchrotron X-radiation of young SNRs. These circumstances prevent us from a firm statement about the contribution of SNRs to the overall flux of galactic cosmic rays. Further observations of young SNRs, especially in the highest energy band (well above 10 TeV), can be crucial in this regard. Quite important are also the complementary observations from massive molecular clouds located within the close proximity of mid-age SNRs.


Supernova Remnant Reverse Shock Hadronic Model Forward Shock Cherenkov Telescope Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdo, A. A. et al. (Fermi collaboration) 2010a, ApJ, 718, 348Google Scholar
  2. Abdo, A. A. et al. (Fermi collaboration) 2010b, ApJ, 710, L92Google Scholar
  3. Abdo, A. A. et al. (Fermi collaboration) 2011, ApJ, 734, 28Google Scholar
  4. Abramowsky, A. et al. (HESS collaboration) 2011, Astron Astrophys, 531, 81Google Scholar
  5. Acciari, V. A. et al. (VERITAS collaboration) 2009, ApJ, 698, L133Google Scholar
  6. Acciari, V. A. et al. (VERITAS collaboration) 2010, ApJ, 474, 937Google Scholar
  7. Acero, F. et al. 2009, Astron Astrophys, 505, 157ADSCrossRefGoogle Scholar
  8. Accero, F. et al. (HESS collaboration) 2010, Astron Astrophys, 516, 62Google Scholar
  9. Adriani, O. et al. (Pamela collaboration) 2011a, Science, 458, 607Google Scholar
  10. Adriani, O. et al. (Pamela collaboration) 2011b, Science, 332, 69Google Scholar
  11. Albert, J. et al. (Magic collaboration) 2007, ApJ, 664, L87Google Scholar
  12. Aharonian, F. A. 2004, Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe (River Edge: World Scientific)CrossRefGoogle Scholar
  13. Aharonian, F. A., & Atoyan, A. M. 1999, Astron Astrophys, 351, 1999Google Scholar
  14. Aharonian, F. A., & Sunyaev, R. A. 1984, MNRAS, 210, 257ADSGoogle Scholar
  15. Aharonian, F. A., Drury, L. O’C., Völk, H. J. 1994, Astron Astrophys, 285, 645Google Scholar
  16. Aharonian, F. A., et al. (HESS collaboration) 2004, Nature, 432, 75Google Scholar
  17. Aharonian, F. A. et al. (HESS collaboration) 2006, Astron Astrphys, 449, 223Google Scholar
  18. Aharonian, F. A. et al. (HESS collaboration) 2007, Astron Astrphys, 464, 235Google Scholar
  19. Aharonian, F. A., Buckley, J., Kifune, T., & Sinnis, G. 2008a, Rep Prog Phys, 71, 096901ADSCrossRefGoogle Scholar
  20. Aharonian, F. A. et al. (HESS collaboration) 2008b, Astron Astrphys, 481, 401Google Scholar
  21. Aharonian et al. (HESS collaboration) 2009, ApJ, 692, 1500Google Scholar
  22. Aharonian, F. A. et al. (HEGRA collaboration) 2010, A&A, 370, 112Google Scholar
  23. Albert, J. et al. (MAGIC collaboration) 2010, ApJ, 474, 937Google Scholar
  24. Atoyan, A. M., Tuffs, R., Aharonian, F. A., & Völk, H. J. 2000a, A&A 354, 915ADSGoogle Scholar
  25. Atoyan, A. M., Aharonian, F. A., Tuffs, R., & Völk, H. J. 2000b, A&A 355, 211ADSGoogle Scholar
  26. Anderson, M., Rudnick, L., Leppik, P., Perley, R., & Braun, R. 1991, ApJ, 373, 146ADSCrossRefGoogle Scholar
  27. Baade, W., & Zwicky, F. 1943, Phys Rev, 46, 67Google Scholar
  28. Bamba, A., Yamazaki, R., Keno, M., & Koyama, K. 2003, ApJ, 589, 827ADSCrossRefGoogle Scholar
  29. Bell, A. R. 2004, NNRAS, 353, 550ADSCrossRefGoogle Scholar
  30. Berezhko, E. G., & Ellison, D. C. 1999, ApJ, 526, 385ADSCrossRefGoogle Scholar
  31. Berezhko, E. G., & Völk, H. J. 2010, Astron Astrophys, 511, id.A34Google Scholar
  32. Berezinsky, V. S., Bulanov, S. V., Ginzburg, V. L., Dogiel, V. A., Ptuskin, V. S. 1990, Astrophysics of Cosmic Rays (Amsterdam; North-Holland)Google Scholar
  33. Borkowski et al. 2010, ApJ, 724, 161Google Scholar
  34. Casanova, S. et al. 2010, PASJ, 62, 1127ADSGoogle Scholar
  35. Cassam-Chenai, G., Decourchelle, A., Ballet, J. et al. 2004, Astron Astrophys, 427, 199ADSCrossRefGoogle Scholar
  36. Churazov, E., Sazonov, S., Tsygankov, S., Sunyaev, R., & Varshalovich, D. 2011, MNRAS, 411, 1727ADSCrossRefGoogle Scholar
  37. Chevalier, R. 1977, Annu Rev Astron Astrophys, 15, 175ADSCrossRefGoogle Scholar
  38. Cowsik, R., & Sarkar, S. 1984 MNRAS, 207, 745ADSGoogle Scholar
  39. Drury, L. O’C., Aharonian, F. A., & Völk, H. J. 1994, Astron Astrophys, 287, 959Google Scholar
  40. Drury, L. O’C., Aharonian, F. A., Malyshev, D., & Gabici, S. 2009, Astron Astrophys, 496, 1Google Scholar
  41. Elisson, D., Patnaude, D. J., Slane, & Raymond, J. 2010, ApJ, 712, 287Google Scholar
  42. Fukui, Y. 2008, AIP Conf Proc, 1085, 104ADSCrossRefGoogle Scholar
  43. Gabici, S., & Aharonian, F. 2007, ApJ, 665, L131ADSCrossRefGoogle Scholar
  44. Gabici, S. et al. 2010, arXiv:1009.5291v1Google Scholar
  45. Gaisser, T. K. 1990, Cosmic Rays and Particle Physics (Cambridge University Press)Google Scholar
  46. Ginzburg, V. L., & Syrovatskii, S. I. 1964, Origin of Cosmic Rays (New York: Macmillan)Google Scholar
  47. Giuliani, A. et al. (Agile collaboration) 2010, Astron Astrophys, 516, L11Google Scholar
  48. Helder, E. A., & Vink, J. 2008, ApJ, 686, 1094ADSCrossRefGoogle Scholar
  49. Helder, E. A. et al. 2009, Science, 325, 719ADSCrossRefGoogle Scholar
  50. Hinton, J. A., & Hofmann, W. 2009, Annu Rev Astron Astrophys, 47, 523ADSCrossRefGoogle Scholar
  51. Iyudin, A. F. et al. 1994, Astron Astrophys, 284, L1ADSGoogle Scholar
  52. Katz, B., & Waxman, E. 2008, JPAP, 1, 18Google Scholar
  53. Kelner, S. R., Aharonian, F. A., & Bugayov, V. V. 2006, Phys Rev D, 74, 034018ADSCrossRefGoogle Scholar
  54. Kirk, J. G., Duffy, P., & Gallant, Y. A. 1996, Astron Astrophys, 314, 1010ADSGoogle Scholar
  55. Koyama, K. et al. 1995, Nature, 378, 255ADSCrossRefGoogle Scholar
  56. Kozlovsky, B., Murthy, R., & Ramaty, R. 2002, ApJS, 141, 523ADSCrossRefGoogle Scholar
  57. Lagage, P. O., & Cesarsky, C. J. 1983, Astron Astrophys, 125, 249ADSzbMATHGoogle Scholar
  58. Lazendic, J. S., Slane, P. O., Gaensler, B. M. et al. 2004, ApJ, 602, L201CrossRefGoogle Scholar
  59. Malkov, M. A., & Drury, L. O’C. 2001, Rep Prog Phys, 64, 429Google Scholar
  60. Malkov, M. A., Diamond, P. H., & Sagdeev, R. Z. 2005, ApJ, 624, L37ADSCrossRefGoogle Scholar
  61. Michelson, P. F., Atwood, W. B., & Ritz, S. 2010, Rep Prog Phys, 73, 074901ADSCrossRefGoogle Scholar
  62. Morlino, G., Amato, E., & Blasi, P. 2008, MNRAS, 392, 240ADSCrossRefGoogle Scholar
  63. Morrison, P. 1957, Nuovo Cimento, 7, 858Google Scholar
  64. Montmerle, T. 1979, ApJ, 231, 95ADSCrossRefGoogle Scholar
  65. Paul, J., Casse, M., & Cesarsky, C. J. 1976, ApJ, 207, 62ADSCrossRefGoogle Scholar
  66. Prantzos, E. et al. 2011, Rev Mod Phys 83, 1001ADSCrossRefGoogle Scholar
  67. Renaud, M. et al. 2006, ApJ, 647, L41ADSCrossRefGoogle Scholar
  68. Slane, P. et al. 1999, ApJ, 525, 357ADSCrossRefGoogle Scholar
  69. Stephenson, F. R., & Green, D. A. 2001, Historical Supernovae and Their Remnants (Oxford: Clarendon Press)Google Scholar
  70. Tanaka, T., Uchiyama, Y., Aharonian, F. et al. 2008, ApJ, 685, 988ADSCrossRefGoogle Scholar
  71. Tavani, M. 2010, Nucl Instrum Methods Phys Res A, 630, 7ADSCrossRefGoogle Scholar
  72. Tavani, M. et al. (Agile collaboration) 2010, ApJ, 710, L151Google Scholar
  73. Torres, D. F., Marrero, A. Y. R., & de Cea Del Pozo, E. 2010, MNRAS, 408, 1257Google Scholar
  74. Uchiyama, Y., & Aharonian, F. A. 2008, ApJ, 677, L195CrossRefGoogle Scholar
  75. Uchiyama, Y., Aharonian, F., Takahashi, T. et al. 2003, Astron Astrophys, 400, 567ADSCrossRefGoogle Scholar
  76. Uchiyama, Y., Aharonian, F., Tanaka, T., Takahashi, T., & Maeda, Y. 2007, Nature, 449, 576ADSCrossRefGoogle Scholar
  77. Villante, F. L., & Vissani, F. 2007, Phys Rev D, 76, 125019ADSCrossRefGoogle Scholar
  78. Vink, J., Yamazaki, R., Helder, E. A., & Schure, K. M. 2010, ApJ, 722, 1727ADSCrossRefGoogle Scholar
  79. Völk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2003, Astron Astrophys, 409, 563ADSCrossRefGoogle Scholar
  80. Wang, Z. R., Qu, Q., & Chen, Y. 1997, Astron Astrophys, 318, L59ADSGoogle Scholar
  81. Zirakashvili, V. N., & Aharonian, F. A. 2007, Astron Astrophys, 465, 695ADSzbMATHCrossRefGoogle Scholar
  82. Zirakashvili, V. N., & Aharonian, F. A. 2010, ApJ, 708, 965ADSCrossRefGoogle Scholar
  83. Zirakashvili, V. N., & Aharonian, F. A. 2011, Phys Rev D, 84, 8CrossRefGoogle Scholar
  84. Zirakashvili, V. N., Aharonian, F. A., Ona di Wilhelmi, E., & Tuffs, R. 2011, submitted to ApJGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • F. A. Aharonian
    • 1
    • 2
  1. 1.Dublin Institute for Advanced StudiesDublinIreland
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations