Dusty Planetary Systems

  • Amaya Moro-MartınDr.


Extensive photometric stellar surveys show that many main-sequence stars show emission at infrared and longer wavelengths that is in excess of the stellar photosphere; this emission is thought to arise from circumstellar dust. The presence of dust disks is confirmed by spatially resolved imaging at infrared to millimeter wavelengths (tracing the dust thermal emission) and at optical to near-infrared wavelengths (tracing the dust scattered light). Because the expected lifetime of these dust particles is much shorter than the age of the stars ( > 1 7 year), it is inferred that this solid material not primordial, i.e., the remaining from the placental cloud of gas and dust where the star was born, but instead is replenished by dust-producing planetesimals. These planetesimals are analogous to the asteroids, comets, and Kuiper belt objects (KBOs) in our solar system that produce the interplanetary dust that gives rise to the zodiacal light (tracing the inner component of the solar system debris disk). The presence of these “debris disks” around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions.


Solar System Dust Particle Giant Planet Terrestrial Planet Kuiper Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. A’Hearn, M. F.  2008, Deep impact and the origin and evolution of cometary nuclei. Space Sci Rev, 138, 237ADSCrossRefGoogle Scholar
  2. Altobelli, N., Dikarev, V., Kempf, S., Srama, R., Helfert, S., Moragas-Klostermeyer, G., Roy, M., & Grün, E. 2007, Cassini/cosmic dust analyzer in situ dust measurements between Jupiter and Saturn. J. Geophys. Res. (Space Phys.), 112, 7105Google Scholar
  3. Aumann, H. H., Beichman, C. A., Gillett, F. C., de Jong, T., & Houck, J. R., et al. 1984, Discovery of a shell around Alpha Lyrae. AJ, 278, L23CrossRefGoogle Scholar
  4. Backman, D. E., & Paresce, F. 1993, Main-sequence stars with circumstellar solid material – The VEGA phenomenon, in Protostars and Planets III, ed. E. H. Levy, & J. I. Lunine (Tucson: University of Arizona Press), 1253Google Scholar
  5. Backman, D. E., Dasgupta, A., & Stencel, R. E. 1995, Model of a Kuiper belt small grain population and resulting far-infrared emission. ApJL, 450, L35ADSCrossRefGoogle Scholar
  6. Beichman, C. A., Bryden, G., Gautier, T. N., Stapelfeldt, K. R., & Werner, M., et al. 2005, An excess due to small grains around the nearby K0 V star HD 69830: asteroid or cometary debris? ApJ, 626, 1061ADSCrossRefGoogle Scholar
  7. Beichman C. A., Tanner, A., Bryden, G., Stapelfeldt, K. R., & Werner, M. W., et al. 2006, IRS spectra of solar-type stars: a search for Asteroid belt analogs. ApJ, 639, 1166ADSCrossRefGoogle Scholar
  8. Benz, W., & Asphaug, E. 1999, Catastrophic disruptions revisited. Icarus, 142, 5ADSCrossRefGoogle Scholar
  9. Bernstein, G. M., Trilling, D. E., Allen, R. L., Brown, M. E., Holman, M., & Malhotra, R. 2004, The size distribution of trans-neptunian bodies. AJ, 128, 1364ADSCrossRefGoogle Scholar
  10. Booth, M., Wyatt, M. C., Morbidelli, A., Moro- Martín, A., & Levison, H. F. 2009, The history of the solar system’s debris disc: observable properties of the Kuiper belt. MNRAS, 399, 385ADSCrossRefGoogle Scholar
  11. Bottke, W. F., Durda, D. D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., & Levison, H. 2005, The fossilized size distribution of the main asteroid belt. Icarus, 175, 111ADSCrossRefGoogle Scholar
  12. Brownlee, D., Tsou, P., Aléon, J., Alexander, C., & Araki, T., et al. 2006, Comet 81P/wild 2 under a microscope. Science, 314, 1711ADSCrossRefGoogle Scholar
  13. Bryden, G., Beichman, C. A., Trilling, D. E., Rieke, G. H., & Holmes, E. K., et al. 2006, Frequency of debris disks around solar-type stars: first results from a Spitzer MIPS survey. ApJ, 636, 1098ADSCrossRefGoogle Scholar
  14. Bryden, G., Beichman, C. A., Carpenter, J. M., Rieke, G. H., Stapelfeldt, K. R., et al. 2009, Planets and debris disks: results from a Spitzer/MIPS search for infrared excess. ApJ, 705, 1226ADSCrossRefGoogle Scholar
  15. Burns, J. A., Lamy, P. L., & Soter, S. 1979, Radiation forces on small particles in the solar system. Icarus, 40, 1ADSCrossRefGoogle Scholar
  16. Carpenter, J. M., Bouwman, J., Mamajek, E. E., Meyer, M. R., & Hillenbrand, L. A., et al. 2009, Formation and evolution of planetary systems: properties of debris dust around solar-type stars. ApJS, 181, 197ADSCrossRefGoogle Scholar
  17. Chapman, C. R., Cohen, B. A., & Grinspoon, D. H. 2007, What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus, 189, 233ADSCrossRefGoogle Scholar
  18. Chen, C. H., Sargent, B. A., Bohac, C., Kim, K. H., & Leibensperger, E., et al. 2006, Spitzer IRS spectroscopy of IRAS-discovered debris disks. ApJS, 166, 351ADSCrossRefGoogle Scholar
  19. Chiang, E., Kite, E., Kalas, P., Graham, J. R., & Clampin, M. 2009, Fomalhaut’s debris disk and planet: constraining the mass of fomalhaut b from disk morphology. ApJ, 693, 734ADSCrossRefGoogle Scholar
  20. Chyba, C. F. 1990, Impact delivery and erosion of planetary oceans in the early inner solar system. Nature, 343, 129ADSCrossRefGoogle Scholar
  21. Clampin, M., Krist, J. E., Ardila, D. R., Golimowski, D. A., & Hartig, G. F., et al. 2003, Hubble space telescope ACS coronagraphic imaging of the circumstellar disk around HD 141569A. AJ, 126, 385ADSCrossRefGoogle Scholar
  22. Debes, J. H., Weinberger, A. J., & Schneider, G. 2008, Complex organic materials in the circumstellar disk of HR 4796A. ApJL, 673, L191ADSCrossRefGoogle Scholar
  23. Decin, G., Dominik, C., Waters, L. B. F. M., & Waelkens, C. 2003, Age dependence of the vega phenomenon: observations. ApJ, 598, 636ADSCrossRefGoogle Scholar
  24. Dermott, S. F., Durda, D.D., Gustafson, B. A. S., Jayaraman, S., Liou, J. C., & Xu, Y. L. 1994a, Zodiacal dust bands, in Asteroids, Comets, Meteors 1993, ed. A. Milani, et al. (Dordrecht/Boston: Kluwer), 127–142Google Scholar
  25. Dermott, S. F., Jayaraman, S., Xu, Y. L., Gustafson, B. Å. S., & Liou, J. C. 1994b, A circumsolar ring of asteroidal dust in resonant lock with the Earth. Nature, 369, 719ADSCrossRefGoogle Scholar
  26. Dermott, S. F., Grogan, K., Durda, D. D., Jayaraman, S., & Kehoe, T. J. J., et al. 2001, Orbital evolution of interplanetary dust, in Springer A&A Libr., Interplanetary Dust, ed. E. Grün, B. A. S. Gustafson, S. F. Dermott, & H. Fechtig (Berlin/New York: Springer), 295Google Scholar
  27. Dermott, S. F., Kehoe, T. J. J., Durda, D. D., Grogan, K., & Nesvorný, D. 2002, Recent rubble-pile origin of asteroidal solar system dust bands and asteroidal interplanetary dust particles, in Asteroids, Comets, and Meteors: ACM 2002, Vol. 500, ed. B. Warmbein (Noordwijk: ESA Publications Division), 319Google Scholar
  28. Dohnanyi, J. S. 1969, Collisional model of asteroids and their debris. J. Geophys. Res., 74, 2431ADSCrossRefGoogle Scholar
  29. Dominik C., & Decin G. 2003, Age dependence of the vega phenomenon: theory. APJ, 598, 626ADSCrossRefGoogle Scholar
  30. Eiroa, C., Marshall, J. P., & Mora, A., et al. 2011, Herschel discovery of a new class of cold, faint debris discs. A&A, 536, L4ADSCrossRefGoogle Scholar
  31. Farley, K. A. 1995, Cenozoic variations in the flux of interplanetary dust recorded by 3He in deep sea sediments. Nature, 376, 153ADSCrossRefGoogle Scholar
  32. Fischer D. A., & Valenti J. 2005, The planet-metallicity correlation. ApJ, 622, 1102ADSCrossRefGoogle Scholar
  33. Frisch, P. C., et al. 1999, Dust in the local interstellar wind. ApJ, 525, 492ADSCrossRefGoogle Scholar
  34. Gautier, T. N., III, Rieke, G. H., Stansberry, J., Bryden, G. C., & Stapelfeldt, K. R., et al. 2007, Far-infrared properties of M Dwarfs. ApJ, 667, 527ADSCrossRefGoogle Scholar
  35. Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466ADSCrossRefGoogle Scholar
  36. Gurnett, D. A., Ansher, J. A., Kurth, W. S. & Granroth, L. 1997, Micron-sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments. Geophys. Res. Lett., 24, 3125ADSCrossRefGoogle Scholar
  37. Greaves J. S., Holland, W. S., Moriarty-Schieven G., Jenness, T., & Dent, W. R. F., et al. 1998, A dust ring around ε-eridani: analog to the young solar system. ApJ, 506, L133ADSCrossRefGoogle Scholar
  38. Greaves, J. S., Holland, W. S., Jayawardhana, R., Wyatt, M. C., & Dent, W. R. F. 2004, A search for debris discs around stars with giant planets. MNRAS, 348, 1097ADSCrossRefGoogle Scholar
  39. Greaves, J. S., et al. 2005, Structure in the ε eridani debris disk. ApJ, 619, L187ADSCrossRefGoogle Scholar
  40. Greaves, J. S., Fischer, D. A. & Wyatt, M. C. 2006, Metallicity, debris discs and planets. MNRAS, 366, 283ADSGoogle Scholar
  41. Grün, E., Gustafson, B., Mann, I., Baguhl, M., Morfill, G. E., Staubach, P., Taylor, A., & Zook, H. A. 1994, Interstellar dust in the heliosphere. A&A, 286, 915ADSGoogle Scholar
  42. Grün, E., Baguhl, M., Svedhem, H., & Zook, H. A. 2001, In situ measurements of cosmic dust, in Springer A&A Libr., Interplanetary Dust, ed. E. Grün, B. A. S. Gustafson, S. F. Dermott, & H. Fechtig (Berlin/New York: Springer), 295Google Scholar
  43. Gustafson, B. A. S. 1994, Physics of zodiacal dust. Ann. Rev. Earth Planet. Sci., 22, 553ADSCrossRefGoogle Scholar
  44. Gustafson, B. A. S., Greenbert, J. M., Kolokolova, L., u, Y., & Stognienko, R. 2001, Interactions with electromagnetic radiation: theory and laboratory simulations, in Springer A&A Libr., Interplanetary Dust, ed. E. Grün, B. A. S. Gustafson, S. F. Dermott, & H. Fechtig (Berlin/New York: Springer), 57Google Scholar
  45. Habing, H. J., Dominik, C., & Jourdain de Muizon, M., et al. 2001, Incidence and survival of remnant disks around main-sequence stars. A&A, 365, 545ADSCrossRefGoogle Scholar
  46. Heap, S. R., Lindler, D. J., Lanz, T. M., Cornett, R. H., Hubeny, I., Maran, S. P., & Woodgate, B. 2000, space telescope imaging spectrograph coronagraphic observations of β pictoris. ApJ, 539, 435Google Scholar
  47. Hillenbrand, L. A., Carpenter, J. M., Kim, J. S., Meyer, M. R., & Backman, D. E., et al. 2008, The complete census of 70 μm-bright debris disks within “the formation and evolution of planetary systems” Spitzer legacy survey of sun-Like stars. ApJ, 677, 630ADSCrossRefGoogle Scholar
  48. Holland, W. S., Greaves, J. S., Zuckerman, B., Webb, R. A., & McCarthy, C. et al. 1998, Submillimetre images of dusty debris around nearby stars. Nature, 392, 788ADSCrossRefGoogle Scholar
  49. Holland, W. S., Greaves, J. S., Dent, W. R. F., Wyatt, M. C., & Zucker-man, B. et al. 2003, Submillimeter observations of an asymmetric dust disk around Fomalhaut. ApJ, 582, 1141ADSCrossRefGoogle Scholar
  50. Houck, J. R., Roellig, T. L., van Cleve, J., Forrest, W. J., & Herter, T. et al. 2004, The infrared spectrograph (IRS) on the Spitzer space telescope. ApJS, 154, 18ADSCrossRefGoogle Scholar
  51. Humes, D. 1980, Results of Pioneer 10 and 11 meteoroid experiments – interplanetary and near-Saturn. J. Geophys. Res., 85(A/II), 5841Google Scholar
  52. Jessberger, E. K., Stephan, T., Rost, D., Arndt, P., & Maetz, M., et al. 2001, Properties of interplanetary dust: information from collected samples, in Springer A&A Libr., Interplanetary Dust, ed. E. Grün, B. A. S. Gustafson, S. F. Dermott, & H. Fechtig (Berlin/New York: Springer), p. 253Google Scholar
  53. Jewitt, D., & Luu, J. 1993, Discovery of the candidate Kuiper belt object 1992 QB1. Nature, 362, 730ADSCrossRefGoogle Scholar
  54. Jewitt, D. C., & Luu, J. X. 2000, Physical Nature of the Kuiper Belt. Protostars and Planets IV, 1201Google Scholar
  55. Jewitt, D., Weaver, H., Agarwal, J., Mutchler, M., & Drahus, M. 2010, A recent disruption of the main-belt asteroid P/2010A2. Nature, 467, 817ADSCrossRefGoogle Scholar
  56. Jura, M. 2006, Carbon deficiency in externally polluted white dwarfs: evidence for accretion of asteroids. ApJ, 653, 613ADSCrossRefGoogle Scholar
  57. Jura, M., Farihi, J., Zuckerman, B., & Becklin, E. E. 2007, Infrared emission from the dusty disk orbiting GD 362, an externally polluted white dwarf. AJ, 133, 1927ADSCrossRefGoogle Scholar
  58. Kalas, P., Graham, J. R., & Clampin, M. 2005, A planetary system as the origin of structure in Fomalhaut’s dust belt. Nature, 435, 1067ADSCrossRefGoogle Scholar
  59. Kalas, P., Graham, J. R., Clampin, M. C., & Fitzgerald, M. P. 2006, First scattered light images of debris disks around HD 53143 and HD 139664. APJ, 637, 57ADSCrossRefGoogle Scholar
  60. Kalas, P., et al. 2008, Optical images of an exosolar planet 25 light-years from Earth. Science, 322, 1345ADSCrossRefGoogle Scholar
  61. Kenyon, S. J., & Bromley, B. C. 2005, Prospects for detection of catastrophic collisions in debris disks. AJ, 130, 269ADSCrossRefGoogle Scholar
  62. Kóspál, Á., Ardila, D. R., Moór, A., & Ábrahám, P. 2009, On the relationship between debris disks and planets. ApJ, 700, L73ADSCrossRefGoogle Scholar
  63. Krist J. E., Ardila D. R., Golimowski D. A., Clampin M. & Ford H. C. 2005, Hubble space telescope advanced camera for surveys coronagraphic imaging of the AU microscopii debris disk. AJ, 129, 1008ADSCrossRefGoogle Scholar
  64. Krivov, A. V. 2010, Debris disks: seeing dust, thinking of planetesimals and planets. Res. Astron. Astrophys., 10, 383ADSCrossRefGoogle Scholar
  65. Krivov, A. V., Sremčević, M., & Spahn, F. 2005, Evolution of a Keplerian disk of colliding and fragmenting particles: a kinetic model with application to the Edgeworth Kuiper belt. Icarus, 174, 105ADSCrossRefGoogle Scholar
  66. Lagrange, A.-M., et al. 2010, A giant planet imaged in the disk of the young star β pictoris. Science, 329, 57ADSCrossRefGoogle Scholar
  67. Landgraf, M., Liou, J.-C., Zook, H. A., & Grün, E. 2002, Origins of solar system dust beyond Jupiter. AJ, 123, 2857ADSCrossRefGoogle Scholar
  68. Leinhardt, Z. M., & Stewart, S. T. 2009, Full numerical simulations of catastrophic small body collisions. Icarus, 199, 542ADSCrossRefGoogle Scholar
  69. Levasseur-Regourd, A. C., Mann, I., Dumont, R. & Hanner, M. 2001, Optical and thermal properties of interplanetary dust, in Springer A&A Libr., Interplanetary Dust, ed. E. Grün, B. A. S. Gustafson, S. F. Dermott, & H. Fechtig, (Berlin/New York: Springer), 57Google Scholar
  70. Li, J., Jewitt, D., Clover, J. M., & Jackson, B. V. 2010, Outburst of comet 17P/Holmes observed With the solar mass ejection imager. arXiv:1012. 1570Google Scholar
  71. Liou, J.-C., & Zook, H. A. 1999, Signatures of the giant planets imprinted on the Edgeworth-Kuiper belt dust disk. AJ, 118, 580ADSCrossRefGoogle Scholar
  72. Lisse, C. M., Beichman, C. A., Bryden, G., & Wyatt, M. C. 2007, On the nature of the dust in the debris disk around HD 69830. ApJ, 658, 584ADSCrossRefGoogle Scholar
  73. Löhne, T., Krivov, A. V. & Rodmann, J. 2008, Long-term collisional evolution of debris disks. APJ, 673, 1123ADSCrossRefGoogle Scholar
  74. Lovis, C., Mayor, M., Pepe, F., Alibert, Y., & Benz, W., et al. 2006, An extrasolar planetary system with three Neptune-mass planets. Nature, 441, 305ADSCrossRefGoogle Scholar
  75. Malhotra, R. 1993, The origin of Pluto’s peculiar orbit. Nature, 365, 819ADSCrossRefGoogle Scholar
  76. Marcy, G., Butler, R. P., Fischer, D., Vogt, S., & Wright, J. T., et al. 2005, Observed properties of exoplanets: masses, orbits, and metallicities. Prog. Theor. Phys. Suppl., 158, 24ADSCrossRefGoogle Scholar
  77. Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, The size distribution of interstellar grains. APJ, 217, 425ADSCrossRefGoogle Scholar
  78. Maurette, M., Immel, G., Hammer, C., Harvey, R., Kurat, G. & Taylor, S. 1994, Collection and curation of IDPs from the Greenland and Antarctic ice Sheets, in Analysis of Interplanetary Dust, ed. M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, & G. J. Flynn (New York: American Institute of Physics), 277–289Google Scholar
  79. Maurette, M., Engrand, C. & Kurat, G. 1996, Collection and microanalysis of antarctic micrometeorites, in ASP Conf. Ser. 104, Physics, Chemistry and Dynamics of Interplanetary Dust, ed. B. A. S. Gustafson, & M. S. Hanner (San Francisco, CA: ASP), 265–273Google Scholar
  80. Mayor, M., Marmier, M., Lovis, C., Udry, S. Sgransan, D., Pepe, F., Benz, W., Bertaux, J. -L., Bouchy, F., Dumusque, X., Lo Curto, G., Mordasini, C., Queloz, D., & Santos, N. C. 2011, The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv:1109.2497 (A&A in press)Google Scholar
  81. McDonnell, T., McBride, N., Green, S. F., & Ratcliff, P. R., et al. 2001, Near Earth environment, in Springer A&A Libr., Interplanetary Dust, ed. E. Grün, B. A. S. Gustafson, S. F. Dermott, & H. Fechtig (Berlin/New York: Springer), 163Google Scholar
  82. McKeegan, K. D., Aléon, J. B., Bradley, J., Brownlee, D., & Busemann, H. A., et al. 2006, Isotopic compositions of cometary matter returned by stardust. Science, 314, 1724ADSCrossRefGoogle Scholar
  83. Meyer, M. R., Carpenter, J. M., Mamajek, E. E., Hillenbrand, L. A., & Hollenbach, D., et al. 2008, Evolution of mid-infrared excess around sun-like stars: constraints on models of terrestrial planet formation. ApJL, 673, L181ADSCrossRefGoogle Scholar
  84. Morales, F. Y., Werner, M. W., Bryden, G., Plavchan, P., & Stapelfeldt, K., et al. 2009, Spitzer Mid-IR spectra of dust debris around A and late B type stars: asteroid belt analogs and power-law dust distributions. ApJ, 699, 1067ADSCrossRefGoogle Scholar
  85. Moro-Martín, A., & Malhotra, R. 2002, A study of the dynamics of dust from the Kuiper belt: spatial distribution and spectral energy distribution. AJ, 124, 2305ADSCrossRefGoogle Scholar
  86. Moro-Martín, A., & Malhotra, R. 2003, Dynamical models of Kuiper belt dust in the inner and outer Solar system. AJ, 125, 2255ADSCrossRefGoogle Scholar
  87. Moro-Martín, A., & Malhotra, R. 2005, Dust outflows and inner gaps generated by massive planets in debris disks. ApJ, 633, 1150ADSCrossRefGoogle Scholar
  88. Moro-Martín, A., Wolf, S., & Malhotra, R. 2005, Signatures of planets in spatially unresolved debris disks. ApJ, 621, 1079ADSCrossRefGoogle Scholar
  89. Moro-Martín, A., Carpenter, J. M., Meyer, M. R., Hillenbrand, L. A., & Malhotra, R., et al. 2007a, Are debris disks and massive planets correlated? ApJ, 658, 1312ADSCrossRefGoogle Scholar
  90. Moro-Martín, A., et al. 2007b, The dust, planetesimals, and planets of HD 38529. ApJ, 668, 1165ADSCrossRefGoogle Scholar
  91. Moro-Martín, A., Wyatt, M. C., Malhotra, R., & Trilling, D. E. 2008, Extra-solar Kuiper belt dust disks, in The Solar System Beyond Neptune, ed. A. Barucci, H. Boehnhardt, D. Cruikshank, & A. Morbidelli (Tucson: University of Arizona Press), 465–482 (arXiv:astro-ph/0703383)Google Scholar
  92. Moro-Martín, A., Malhotra, R., Bryden, G., Rieke, G. H., Su, K. Y. L., Beichman, C. A., & Lawler, S. M. 2010, Locating planetesimal belts in the multiple-planet systems HD 128311, HD 202206, HD 82943, and HR 8799. ApJ, 717, 1123ADSCrossRefGoogle Scholar
  93. Mouillet, D., Larwood, J. D., Papaloizou, J. C. B., & Lagrange, A. M. 1997, A planet on an inclined orbit as an explanation of the warp in the Beta Pictoris disc. MNRAS, 292, 896ADSCrossRefGoogle Scholar
  94. Mukai, T., Blum, J., Nakamura, A. M., Johnson R. E., & Havnes, O. 2001, Physical processes on interplanetary dust, in Springer A&A Libr., Interplanetary Dust, ed. E. Grün, B. A. S. Gustafson, S. F. Dermott, & H. Fechtig (Berlin/New York: Springer), 445Google Scholar
  95. Müller, S., Löhne, T., & Krivov, A. V. 2010, The debris disk of vega: a steady-state collisional cascade, naturally. ApJ, 708, 1728ADSCrossRefGoogle Scholar
  96. Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge: Cambridge University Press)zbMATHGoogle Scholar
  97. Nesvorný, D., Jenniskens, P., Levison, H. F., Bottke, W. F., Vokrouhlický, D., & Gounelle, M. 2010, Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. ApJ, 713, 816Google Scholar
  98. Plavchan, P., Jura, M., & Lipscy, S. J. 2005, Where are the M dwarf disks older than 10 million years? ApJ, 631, 1161ADSCrossRefGoogle Scholar
  99. Quillen, A. C. 2006, Predictions for a planet just inside Fomalhaut’s eccentric ring. MNRAS, 372, L14ADSGoogle Scholar
  100. Raymond, S. N., Armitage, P. J., Moro-Martín, A., Booth, M., Wyatt, M. C., Armstrong, J. C., Mandell, A. M., Selsis, F., & West, A. A. 2011, Debris disks as signposts of terrestrial planet formation. A &A, 530, A62ADSGoogle Scholar
  101. Raymond, S. N., Armitage, P. J., Moro-Martín, A., Booth, M., Wyatt, M. C., Armstrong, J. C., Mandell, A. M., Selsis, F., & West, A. A. 2012, Debris disks as signposts of terrestrial planet formation. II Dependence of exoplanet architectures on giant planet and disk properties. arXiv:1201.3622 (A&A in press)Google Scholar
  102. Reach, W. T., Franz, B. A., Weiland, J. L., Hauser, M. G., & Kelsall, T. N., et al. 1995, Observational confirmation of a circumsolar dust ring by the COBE satellite. Nature, 374, 521ADSCrossRefGoogle Scholar
  103. Reach, W. T., Morris, P., Boulanger, F., & Okumura, K. 2003, The mid-infrared spectrum of the zodiacal and exozodiacal light. Icarus, 164, 384ADSCrossRefGoogle Scholar
  104. Rieke, G. H., Young, E. T., Engelbracht, C. W., Kelly, D. M., & Low, F. J., et al. 2004, The multiband imaging photometer for Spitzer (MIPS). ApJS, 154, 25ADSCrossRefGoogle Scholar
  105. Sandford, S. A., Aléon, J., Alexander, C., Araki, T., & Bajt, S., et al. 2006, Organics captured from comet 81P/Wild 2 by the stardust spacecraft. Science, 314, 1720ADSCrossRefGoogle Scholar
  106. Schneider, G., Silverstone, M. D., & Hines, D. C. 2005, Discovery of a nearly edge-on disk around HD 32297. ApJ, 629, L117ADSCrossRefGoogle Scholar
  107. Siegler, N., Muzerolle, J., Young, E. T., Rieke, G. H., Mamajek, E. E., Trilling, D. E., Gorlova, N., & Su, K. Y. L. 2007, Spitzer 24 μm observations of open cluster IC 2391 and debris disk evolution of FGK stars. ApJ, 654, 580ADSCrossRefGoogle Scholar
  108. Stapelfeldt, K. R., Holmes, E. K., Chen, C., Rieke, G. H., & Su, K. Y. L., et al. 2004, First look at the Fomalhaut debris disk with the Spitzer space telescope. ApJS, 154, 458ADSCrossRefGoogle Scholar
  109. Stark, C. C., & Kuchner, M. J. 2009, A new algorithm for self-consistent three-dimensional modeling of collisions in dusty debris disks. ApJ, 707, 543ADSCrossRefGoogle Scholar
  110. Stern, S. A. 1996, Signatures of collisions in the Kuiper disk. A&A, 310, 999ADSGoogle Scholar
  111. Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., & Kring, D. A. 2005, The origin of planetary impactors in the inner solar system. Science, 309, 1847ADSCrossRefGoogle Scholar
  112. Su, K. Y. L., Rieke, G. H., Misselt, K. A., Stansberry, J. A., & Moro-Martín, A., et al. 2005, The vega debris disk: a surprise from Spitzer. ApJ, 628, 487ADSCrossRefGoogle Scholar
  113. Su, K. Y. L., Rieke, G. H., Stansberry, J. A., Bryden, G., & Stapelfeldt, K. R., et al. 2006, Debris disk evolution around A stars. ApJ, 653, 675ADSCrossRefGoogle Scholar
  114. Sykes, M. V., & Greenberg, R. 1986, The formation and origin of the IRAS zodiacal dust bands as a consequence of single collisions between asteroids. Icarus, 65, 51ADSCrossRefGoogle Scholar
  115. Thébault, P., & Augereau, J.-C. 2007, Collisional processes and size distribution in spatially extended debris discs. A&A, 472, 169ADSCrossRefGoogle Scholar
  116. Trilling, D. E., et al. 2008, Debris disks around sun-like stars. ApJ, 674, 1086ADSCrossRefGoogle Scholar
  117. Vitense, C., Krivov, A. V., Kobayashi, H., & Löhne, T. 2012, An improved model of the Edgeworth-Kuiper debris disk. A&A, 540, A30ADSCrossRefGoogle Scholar
  118. Weingartner, J. C., & Draine, B. T. 2001, Dust grain-size distributions and extinction in the milky way, large magellanic cloud, and small magellanic cloud. ApJ, 548, 296ADSCrossRefGoogle Scholar
  119. Wisdom, J. 1980, The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. AJ, 85, 1122ADSCrossRefGoogle Scholar
  120. Wyatt M. C. 2005, The insignificance of P-R drag in detectable extrasolar planetesimal belts. A&A, 433, 1007ADSCrossRefGoogle Scholar
  121. Wyatt, M. C. 2008a, Dynamics of small bodies in planetary systems. in Lect. Notes Phys. 758, Small Bodies in Planetary Systems, ed. I. Mann, A. Nakamura, & T. Mukai (Berlin/London: Springer) (arXiv:astro-ph/0807.1272)Google Scholar
  122. Wyatt, M. C. 2008b, Evolution of debris disks. ARA&A, 46, 339ADSCrossRefGoogle Scholar
  123. Wyatt, M. C., Dermott, S. F., Telesco, C. M., Fisher, R. S., Grogan, K., Holmes, E. K., & Piña, R. K. 1999, How observations of circumstellar disk asymmetries can reveal hidden planets: pericenter glow and its application to the HR 4796 disk. ApJ, 527, 918ADSCrossRefGoogle Scholar
  124. Wyatt, M. C., Smith, R., Greaves, J. S., Beichman, C. A., Bryden, G., & Lisse, C. M. 2007, Transience of hot dust around sun-like Stars. ApJ, 658, 569ADSCrossRefGoogle Scholar
  125. Yamamoto, S., & Mukai, T. 1998, Dust production by impacts of interstellar dust on Edgeworth-Kuiper belt objects. A&A, 329, 785ADSGoogle Scholar
  126. Zolensky, M. E., Zega, T. J., Yano, H., Wirick, S., & Westphal, A., et al. 2006a, Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science, 314, 1735ADSCrossRefGoogle Scholar
  127. Zolensky, M., Bland, P., Brown, P. & Halliday, I. 2006b, Flux of extraterrestrial materials, in Meteorites and the Early Solar System II, ed. D. S. Lauretta, & H. Y. McSween Jr. (Tucson: University of Arizona Press), 869Google Scholar
  128. Zook, H. A., & Berg, O. E. 1975, A source for hyperbolic cosmic dust particles. P&SS, 23, 183ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Amaya Moro-MartınDr.
    • 1
  1. 1.Department of AstrophysicsCentro de Astrobiología, INTA-CSIC, Instituto de Tecnica AeroespacialMadridSpain

Personalised recommendations