Optical-Tweezers-Based Microrheology of Soft Materials and Living Cells

Reference work entry

Abstract

Optical tweezers [1] use a highly focused laser beam to form a stable trap to confine one or more micron- or nano-sized particles in three-dimensional space, enabling noninvasive manipulation, without any mechanical contact, of microscopic probe particles embedded in a sample. Since its first demonstration in 1986 by Ashkin et al. [2], single-beam optical tweezers have been used to manipulate microscopic objects such as colloidal particles [3], biomolecules [4, 5], and biological cells [6–9]. In addition, optical tweezers have also been used as pico-Newton force transducers to measure the strength of molecular bonds [10] and to determine the transmission of forces in the microscopic environment of complex fluids [11–14]. Combining the ability to manipulate microparticles with force measurement, optical tweezers have been used to study the micromechanical properties of soft materials [15, 16], such as colloidal crystals [17–20], liquid crystals [21–23], carbon nanotube suspensions [24], actin-coated lipid vesicles [25–27], living cells [28–33], cytoskeletal networks [34–37], DNA networks [38, 39], polymer solutions [40–42], collagen gels [43, 44], human erythrocyte membranes [45–49], and even individual strands of DNA molecules [5, 50].

Keywords

Optical Tweezer Viscoelastic Medium Probe Particle Optical Force Complex Shear Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24(4):156–159CrossRefGoogle Scholar
  2. 2.
    Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290CrossRefGoogle Scholar
  3. 3.
    Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci U S A 94:4853–4860CrossRefGoogle Scholar
  4. 4.
    Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of Kinesin stepping by optical trapping interferometry. Nature 365:721–727CrossRefGoogle Scholar
  5. 5.
    Lien C-H, Wei M-T, Tseng T-Y, Lee C-D, Wang C, Wang T-F, Ou-Yang HD, Chiou A (2009) Probing the dynamic differential stiffness of dsDNA interacting with RecA in the enthalpic regime. Opt Express 17(22):20376–20385CrossRefGoogle Scholar
  6. 6.
    Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of single cell using infrared laser beams. Nature 330:769–771CrossRefGoogle Scholar
  7. 7.
    Svoboda K, Schmidt CF, Branton D, Block SM (1992) Conformation and elasticity of the isolated red blood cell membrane skeleton. Biophys J 63:784–793CrossRefGoogle Scholar
  8. 8.
    Liu S-L, Karmenyan A, Wei M-T, Huang C-C, Lin C-H, Chiou A (2007) Optical forced oscillation for the study of lectin-glycoprotein interaction at the cellular membrane of a Chinese hamster ovary cell. Opt Express 15(5):2713–2723CrossRefGoogle Scholar
  9. 9.
    Wei M-T, Hua K-F, Hsu J, Karmenyan A, Tseng K-Y, Wong C-H, Hsu H-Y, Chiou A (2007) The interaction of lipopolysaccharide with membrane receptors on macrophages pretreated with extract of Reishi polysaccharides measured by optical tweezers. Opt Express 15(17):11020–11032CrossRefGoogle Scholar
  10. 10.
    Stout AL (2001) Detection and characterization of individual intermolecular bonds using optical tweezers. Biophys J 80:2976–2986CrossRefGoogle Scholar
  11. 11.
    Meiners J-C, Quake SR (1999) Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys Rev Lett 82(10):2211–2214CrossRefGoogle Scholar
  12. 12.
    Hough LA, Ou-Yang HD (2002) Correlated motions of two hydrodynamically coupled particles confined in separate quadratic potential wells. Phys Rev E 65:021906 (021907 pages)CrossRefGoogle Scholar
  13. 13.
    Henderson S, Mitchell S, Bartlett P (2002) Propagation of hydrodynamic interactions in colloidal suspensions. Phys Rev Lett 88:088302 (088304 pages)CrossRefGoogle Scholar
  14. 14.
    Ou-Yang HD, Wei M-T (2010) Complex fluids: probing mechanical properties of biological systems with optical tweezers. Annu Rev Phys Chem 61:421–440CrossRefGoogle Scholar
  15. 15.
    Yao A, Tassieri M, Padgett M, Cooper J (2009) Microrheology with optical tweezers. Lab Chip 9:2568–2575CrossRefGoogle Scholar
  16. 16.
    Preece D, Warren R, Evans RML, Gibson GM, Padgett MJ, Cooper JM, Tassieri M (2011) Optical tweezers: wideband microrheology. J Opt 13:044022 (044026 pages)CrossRefGoogle Scholar
  17. 17.
    Pertsinidis A, Ling XS (2001) Equilibrium configurations and energetics of point defects in two-dimensional colloidal crystals. Phys Rev Lett 87(9):098303 (098304 pages)CrossRefGoogle Scholar
  18. 18.
    Crocker JC, Grier DG (1994) Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys Rev Lett 73(2):352–355CrossRefGoogle Scholar
  19. 19.
    En A-R, Díaz-Leyva P, Arauz-Lara JL (2005) Microrheology from rotational diffusion of colloidal particles. Phys Rev Lett 94:106001 (106004 pages)CrossRefGoogle Scholar
  20. 20.
    Wilson LG, Harrison AW, Poon WCK, Puertas AM (2011) Microrheology and the fluctuation theorem in dense colloids. EPL 93:58007CrossRefGoogle Scholar
  21. 21.
    Murazawa N, Juodkazis S, Tanamura Y, Misawa H (2006) Rheology measurement at liquid-crystal water interface using laser tweezers. Jpn J Appl Phys 45(2A):977–982CrossRefGoogle Scholar
  22. 22.
    Koenig GM Jr, Ong R, Cortes AD, Antonio Moreno-Razo J, Pablo JJ, Abbott NL (2009) Single nanoparticle tracking reveals influence of chemical functionality of nanoparticles on local ordering of liquid crystals and nanoparticle diffusion coefficients. Nano Lett 9(7):2794–2801CrossRefGoogle Scholar
  23. 23.
    Mizuno D, Kimura Y, Hayakawa R (2004) Electrophoretic microrheology of a dilute lamellar phase: relaxation mechanisms in frequency-dependent mobility of nanometer-sized particles between soft membranes. Phys Rev E 70:011509CrossRefGoogle Scholar
  24. 24.
    Hough LA, Islam MF, Janmey PA, Yodh AG (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93(16):168102 (168104 pages)CrossRefGoogle Scholar
  25. 25.
    Helfer E, Harlepp S, Bourdieu L, Robert J, MacKintosh FC, Chatenay D (2001) Viscoelastic properties of actin-coated membranes. Phys Rev E 63:021904 (021913 pages)CrossRefGoogle Scholar
  26. 26.
    Helfer E, Harlepp S, Bourdieu L, Robert J, MacKintosh FC, Chatenay D (2000) Microrheology of biopolymer-membrane complexes. Phys Rev Lett 85:457–460CrossRefGoogle Scholar
  27. 27.
    Helfer E, Harlepp S, Bourdieu L, Robert J, MacKintosh FC, Chatenay D (2001) Buckling of actin-coated membranes under application of a local force. Phys Rev Lett 87(8):088103 (088104 pages)CrossRefGoogle Scholar
  28. 28.
    Yanai M, Butler JP, Suzuki T, Kanda A, Kurachi M, Tashiro H, Sasaki H (1999) Intracellular elasticity and viscosity in the body, leading, and trailing regions of locomoting neutrophils. Am J Physiol Cell Physiol 277:C432–C440Google Scholar
  29. 29.
    Wei M-T, Zaorski A, Yalcin HC, Wang J, Hallow M, Ghadiali SN, Chiou A, Ou-Yang HD (2008) A comparative study of living cell micromechanical properties by oscillatory optical tweezer. Opt Express 16(12):8594–8603CrossRefGoogle Scholar
  30. 30.
    Yalcin HC, Hallow KM, Wang J, Wei M-T, Ou-Yang HD, Ghadiali SN (2009) Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening. Am J Physiol Lung Cell Mol Physiol 297:L881–L891CrossRefGoogle Scholar
  31. 31.
    Balland M, Desprat N, Icard D, Féréol S, Asnacios A, Browaeys J, Hénon S, Gallet F (2006) Power laws in microrheology experiments on living cells: comparative analysis and modeling. Phys Rev E 74:021911–021917CrossRefGoogle Scholar
  32. 32.
    Gallet F, Arcizet D, Bohec P, Richert A (2009) Power spectrum of out-of-equilibrium forces in living cells: amplitude and frequency dependence. Soft Matter 5:2947–2953CrossRefGoogle Scholar
  33. 33.
    Wilhelm C (2008) Out-of-equilibrium microrheology inside living cells. Phys Rev Lett 101:028101 (028104 pages)CrossRefGoogle Scholar
  34. 34.
    Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–373CrossRefGoogle Scholar
  35. 35.
    Mizuno D, Head DA, MacKintosh FC, Schmidt CF (2008) Active and passive microrheology in equilibrium and nonequilibrium systems. Macromolecules 41(19):7194–7202CrossRefGoogle Scholar
  36. 36.
    Mofrad MRK (2009) Rheology of the cytoskeleton. Annu Rev Fluid Mech 41:433–453MATHCrossRefGoogle Scholar
  37. 37.
    Pelletier V, Gal N, Fournier P, Kilfoil ML (2009) Microrheology of microtubule solutions and actin-microtubule composite networks. Phys Rev Lett 102:188303 (188304 pages)CrossRefGoogle Scholar
  38. 38.
    Zhu X, Kundukad B, van der Maarel JRC (2008) Viscoelasticity of entangled l-phage DNA solutions. J Chem Phys 129:185103 (185106 pages)CrossRefGoogle Scholar
  39. 39.
    Mason TG, Ganesan K, Zanten JH, Wirtz D, Kuo SC (1997) Particle tracking microrheology of complex fluids. Phys Rev Lett 79:3282–3285CrossRefGoogle Scholar
  40. 40.
    Hough LA, Ou-Yang HD (2006) Viscoelasticity of aqueous telechelic poly(ethylene oxide) solutions: relaxation and structure. Phys Rev E 73:031802 (031808 pages)CrossRefGoogle Scholar
  41. 41.
    Chiang C-C, Wei M-T, Chen Y-Q, Yen P-W, Huang Y-C, Chen J-Y, Lavastre O, Guillaume H, Guillaume D, Chiou A (2011) Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS). Opt Express 19(9):8847–8854CrossRefGoogle Scholar
  42. 42.
    Lee H, Shin Y, Kim ST, Reinherz EL, Lang MJ (2012) Stochastic optical active rheology. Appl Phys Lett 101:031902CrossRefGoogle Scholar
  43. 43.
    Latinovic O, Hough LA, Ou-Yang HD (2010) Structural and micromechanical characterization of type I collagen gels. J Biomech 43:500–506CrossRefGoogle Scholar
  44. 44.
    Shayegan M, Forde NR (2013) Microrheological characterization of collagen systems: from molecular solutions to fibrillar gels. PLoS One 8(8):e70590CrossRefGoogle Scholar
  45. 45.
    Hénon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76:1145–1151CrossRefGoogle Scholar
  46. 46.
    Rancourt-Grenier S, Wei M-T, Bai J-J, Chiou A, Bareil PP, Duval P-L, Sheng Y (2010) Dynamic deformation of red blood cell in dual-trap optical tweezers. Opt Express 18(10):10462–10472CrossRefGoogle Scholar
  47. 47.
    Lim CT, Dao M, Suresh S, Sow CH, Chew KT (2004) Large deformation of living cells using laser traps. Acta Mater 52:1837–1845CrossRefGoogle Scholar
  48. 48.
    Daoa M, Limb CT, Suresha S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solid 51:2259–2280CrossRefGoogle Scholar
  49. 49.
    Lyubin EV, Khokhlova MD, Skryabina MN, Fedyanin AA (2012) Cellular viscoelasticity probed by active rheology in optical tweezers. J Biomed Opt 17(10):101510CrossRefGoogle Scholar
  50. 50.
    Meiners J-C, Quake SR (2000) Femtonewton force spectroscopy of single extended DNA molecules. Phys Rev Lett 84(21):5014–5017CrossRefGoogle Scholar
  51. 51.
    Hough LA, Ou-Yang HD (1999) A new probe for mechanical testing of nanostructures in soft materials. J Nanopart Res 1:495–499CrossRefGoogle Scholar
  52. 52.
    Wei M-T (2014) Microrheology of soft matter and living cells in equilibrium and non-equilibrium systems. Ph.D., Bioengineering, Lehigh University, BethlehemGoogle Scholar
  53. 53.
    Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85(4):888–891CrossRefGoogle Scholar
  54. 54.
    Levine AJ, Lubensky TC (2000) One- and two-particle microrheology. Phys Rev Lett 85:1774–1777CrossRefGoogle Scholar
  55. 55.
    Hoffman BD, Crocker JC (2009) Cell mechanics: dissecting the physical responses of cells to force. Annu Rev Biomed Eng 11:259–288CrossRefGoogle Scholar
  56. 56.
    Hoffman BD, Massiera G, Citters KMV, Crocker JC (2006) The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci U S A 103(27):10259–10264CrossRefGoogle Scholar
  57. 57.
    Valentine MT, Dewalt LE, Ou-Yang HD (1996) Forces on a colloidal particle in a polymer solution: a study using optical tweezers. J Phys Condens Matter 8:9477–9482CrossRefGoogle Scholar
  58. 58.
    Ou-Yang HD (1999) Design and applications of oscillating optical tweezers for direct measurements of colloidal forces. In: Farinato RS, Dubin PL (Eds.), Colloid–polymer interactions: from fundamentals to practice. Wiley, New YorkGoogle Scholar
  59. 59.
    Wright WH, Sonek GJ, Berms MW (1993) Radiation trapping forces on microspheres with optical tweezers. Appl Phys Lett 63(9):715–717CrossRefGoogle Scholar
  60. 60.
    Ghislain LP, Switz NA, Webb WW (1994) Measurement of small forces using an optical trap. Rev Sci Instrum 65(9):2762–2768CrossRefGoogle Scholar
  61. 61.
    Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582CrossRefGoogle Scholar
  62. 62.
    Mazolli A, Neto PAM, Nussenzveig HM (2003) Theory of trapping forces in optical tweezers. Proc R Soc Lond A 459:3021–3041MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Richardson AC, Reihani SNS, Oddershede LB (2008) Non-harmonic potential of a single beam optical trap. Opt Express 16(20):15709–15717CrossRefGoogle Scholar
  64. 64.
    Merenda F, Boer G, Rohner J, Delacrétaz GD, Salathé R-P (2006) Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow. Opt Express 14(4):1685–1699CrossRefGoogle Scholar
  65. 65.
    Greenleaf WJ, Woodside MT, Abbondanzieri EA, Block SM (2005) Passive all-optical force clamp for high-resolution laser trapping. Phys Rev Lett 95:208102 (208104 pages)CrossRefGoogle Scholar
  66. 66.
    Neves AAR, Fontes A, Pozzo LY, Thomaz AA, Chillce E, Rodriguez E, Barbosa LC, Cesar CL (2006) Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric. Opt Express 14(26):13101–13106CrossRefGoogle Scholar
  67. 67.
    Jahnel M, Behrndt M, Jannasch A, Schäffer E, Grill SW (2011) Measuring the complete force field of an optical trap. Opt Lett 36(7):1260–1262CrossRefGoogle Scholar
  68. 68.
    Ling L, Zhou F, Huang L, Guo H, Li Z, Li Z-Y (2011) Perturbation between two traps in dual-trap optical tweezers. J Appl Phys 109:083116CrossRefGoogle Scholar
  69. 69.
    Huang C-C, Wang C-F, Mehta DS, Chiou A (2001) Optical tweezers as sub-pico-newton force transducers. Opt Commun 195:41–48CrossRefGoogle Scholar
  70. 70.
    Rohrbach A, Kress H, Stelzer EHK (2003) Three-dimensional tracking of small spheres in focused laser beams influence of the detection angular aperture. Opt Lett 28(6):411–413CrossRefGoogle Scholar
  71. 71.
    Rohrbach A, Tischer C, Neumayer D, Florin E-L, Stelzer EHK (2004) Trapping and tracking a local probe with a photonic force microscope. Rev Sci Instrum 75(6):2197–2210CrossRefGoogle Scholar
  72. 72.
    Rohrbach A (2005) Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. Phys Rev Lett 95(16):168102CrossRefGoogle Scholar
  73. 73.
    Wei M-T, Yang K-T, Karmenyan A, Chiou A (2006) Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap. Opt Express 14(7):3056–3064CrossRefGoogle Scholar
  74. 74.
    Wei M-T, Chiou A (2005) Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants. Opt Express 13(15):5798–5806CrossRefGoogle Scholar
  75. 75.
    Ghislain LP, Webb WW (1993) Scanning-force microscope based on an optical trap. Opt Lett 18(19):1678–1680CrossRefGoogle Scholar
  76. 76.
    Wei M-T, Ng J, Chan CT, Chiou A, Ou-Yang HD (2012) Transverse force profiles of individual dielectric particles in an optical trap. In: SPIE optics photonics, San DiegoGoogle Scholar
  77. 77.
    Latinovic O (2010) Micromechanics and structure of soft and biological materials: an optical tweezers study. Verlag Dr. Muller Publishing, SaarbruckenGoogle Scholar
  78. 78.
    Wright WH, Sonek GJ, Berns MW (1999) Parametric study of the forces on microspheres held by optical tweezers. Appl Optics 33(9):1735–1748CrossRefGoogle Scholar
  79. 79.
    Barton JP, Alexander DR, Schaub SA (1989) Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J Appl Phys 66:4594–4602CrossRefGoogle Scholar
  80. 80.
    Zemánek P, Jonáš A, Šrámek L, Liška M (1998) Optical trapping of Rayleigh particles using a Gaussian standing wave. Opt Commun 151:273–285CrossRefGoogle Scholar
  81. 81.
    Ganic D, Gan X, Gu M (2004) Exact radiation trapping force calculation based on vectorial diffraction theory. Opt Express 12(12):2670–2675CrossRefGoogle Scholar
  82. 82.
    Viana NB, Mazolli A, Neto PAM, Nussenzveig HM (2006) Absolute calibration of optical tweezers. Appl Phys Lett 88:131110CrossRefGoogle Scholar
  83. 83.
    Ferry JD (1970) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  84. 84.
    Brau RR, Ferrer JM, Lee H, Castro CE, Tam BK, Tarsa PB, Matsudaira P, Boyce MC, Kamm R, Lang MJ (2007) Passive and active microrheology with optical tweezers. J Opt A: Pure Appl Opt 9:S103–S112CrossRefGoogle Scholar
  85. 85.
    Dasgupta BR, Tee S-Y, Crocker JC, Frisken BJ, Weitz DA (2002) Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys Rev E 65:051505 (051510 Pages)CrossRefGoogle Scholar
  86. 86.
    Huang Y, Santore MM (2002) Dynamics in adsorbed layers of associative polymers in the limit of strong backbone-surface attractions. Langmuir 18(6):2158–2165CrossRefGoogle Scholar
  87. 87.
    Gittes F, MacKintosh FC (1998) Dynamic shear modulus of a semiflexible polymer network. Phys Rev E 58(2):R1241–R1244CrossRefGoogle Scholar
  88. 88.
    Schnurr B, Gittes F, MacKintosh FC, Schmidt CF (1997) Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules 30(25):7781–7792CrossRefGoogle Scholar
  89. 89.
    Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74(7):1250–1253CrossRefGoogle Scholar
  90. 90.
    Green MS, Tobolsky AV (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14(80):1724109Google Scholar
  91. 91.
    Annable T, Buscall R, Ettelaie R, Whittlestone D (1993) The rheology of solutions of associating polymers: comparison of experimental behavior with transient network theory. J Rheol 37:695–727CrossRefGoogle Scholar
  92. 92.
    Pham QT, Russel WB, Thibeault JC, Lau W (1999) Polymeric and colloidal modes of relaxation in latex dispersions containing associative triblock copolymers. J Rheol 43:1599–1616CrossRefGoogle Scholar
  93. 93.
    Mizuno D, Bacabac R, Tardin C, Head D, Schmidt CF (2009) High-resolution probing of cellular force transmission. Phys Rev Lett 102:168102 (168104 pages)CrossRefGoogle Scholar
  94. 94.
    Hale CM, Sun SX, Wirtz D (2009) Resolving the role of actoymyosin contractility in cell microrheology. PLoS One 4(9):e7054 (7011 pages)CrossRefGoogle Scholar
  95. 95.
    Robert D, Nguyen T-H, Fo G, Wilhelm C (2010) In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS One 5(4):e10046CrossRefGoogle Scholar
  96. 96.
    Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Annu Rev Mater Res 41:75–97CrossRefGoogle Scholar
  97. 97.
    Aratyn-Schaus Y, Oakes PW, Gardel ML (2011) Dynamic and structural signatures of lamellar actomyosin force generation. Mol Biol Cell 22:1330–1339CrossRefGoogle Scholar
  98. 98.
    Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127CrossRefGoogle Scholar
  99. 99.
    Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, Chien S (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045CrossRefGoogle Scholar
  100. 100.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044CrossRefGoogle Scholar
  101. 101.
    Wang N, Tolić-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenović D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616CrossRefGoogle Scholar
  102. 102.
    Byfield FJ, Wen Q, Levental I, Nordstrom K, Arratia PE, Miller RT, Janmey PA (2009) Absence of filamin a prevents cells from responding to stiffness gradients on gels coated with collagen but not fibronectin. Biophys J 96:5095–5102CrossRefGoogle Scholar
  103. 103.
    Trichet L, Digabel JL, Hawkins RJ, Vedula SRK, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci U S A 109(18):6933–6938CrossRefGoogle Scholar
  104. 104.
    Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ (2012) Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys J 103(4):640–648CrossRefGoogle Scholar
  105. 105.
    Tee S-Y, Fu J, Chen CS, Janmey PA (2011) Cell shape and substrate rigidity both regulate cell stiffness. Biophys J 100(5):L25–L27CrossRefGoogle Scholar
  106. 106.
    Bishop AI, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (2004) Optical microrheology using rotating laser-trapped particles. Phys Rev Lett 92(19):198104 (198104 pages)CrossRefGoogle Scholar
  107. 107.
    Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102 (148104 pages)CrossRefGoogle Scholar
  108. 108.
    Koenderink GH, Dogic Z, Nakamura F, Bendix PM, MacKintosh FC, Hartwig JH, Stossel TP, Weitz DA (2009) An active biopolymer network controlled by molecular motors. Proc Natl Acad Sci U S A 106(36):15192–15197CrossRefGoogle Scholar
  109. 109.
    Silva MS, Depken M, Stuhrmann B, Korsten M, MacKintosh FC, Koenderink GH (2011) Active multistage coarsening of actin networks driven by myosin motors. Proc Natl Acad Sci U S A 108(23):9408–9413CrossRefGoogle Scholar
  110. 110.
    John K, Caillerie D, Peyla P, Raoult A, Misbah C (2013) Nonlinear elasticity of cross-linked networks. Phys Rev E 87:042721CrossRefGoogle Scholar
  111. 111.
    Reymann A-C, Boujemaa-Paterski R, Martiel J-L, Guérin C, Cao W, Chin HF, Cruz EMDL, Théry M, Blanchoin L (2012) Actin network architecture can determine myosin motor activity. Science 336(6086):1310–1314CrossRefGoogle Scholar
  112. 112.
    Stuhrmann B, Silva MS, Depken M, MacKintosh FC, Koenderink GH (2012) Nonequilibrium fluctuations of a remodeling in vitro cytoskeleton. Phys Rev E 86:020901(R) (020905 pages)CrossRefGoogle Scholar
  113. 113.
    Lau AWC, Hoffman BD, Davies A, Crocker JC, Lubensky TC (2003) Microrheology, stress fluctuations, and active behavior of living cells. Phys Rev Lett 91:198101 (198104 pages)CrossRefGoogle Scholar
  114. 114.
    MacKintosh FC, Levine AJ (2008) Nonequilibrium mechanics and dynamics of motor-activated gels. Phys Rev Lett 100:018104CrossRefGoogle Scholar
  115. 115.
    Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA (2008) Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys Rev Lett 100:118104CrossRefGoogle Scholar
  116. 116.
    Kollmannsberger P, Mierke CT, Fabry B (2011) Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension. Soft Matter 7:3127–3132CrossRefGoogle Scholar
  117. 117.
    Fernández P, Pullarkat PA, Ott A (2006) A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J 90:3796–3805CrossRefGoogle Scholar
  118. 118.
    Yao NY, Broedersz CP, Depken M, Becker DJ, Pollak MR, MacKintosh FC, Weitz DA (2013) Stress-enhanced gelation: a dynamic nonlinearity of elasticity. Phys Rev Lett 110:018103CrossRefGoogle Scholar
  119. 119.
    Bruno L, Salierno M, Wetzler DE, Despósito MA, Levi V (2011) Mechanical properties of organelles driven by microtubule-dependent molecular motors in living cells. PLoS One 6(4):e18332CrossRefGoogle Scholar
  120. 120.
    Wei M-T, Ou-Yang HD (2010) Thermal and non-thermal intracellular mechanical fluctuations of living cells. In: SPIE optics photonics, San Diego, p 77621LGoogle Scholar
  121. 121.
    Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224CrossRefGoogle Scholar
  122. 122.
    Chen CS (2008) Mechanotransduction – a field pulling together? J Cell Sci 121(20):3285–3291CrossRefGoogle Scholar
  123. 123.
    Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev 10:75–82CrossRefGoogle Scholar
  124. 124.
    Parker KK, Ingber DE (2007) Extracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering. Philos Trans R Soc B 2114:1–13Google Scholar
  125. 125.
    Alamo JC, Norwich GN, Li Y-sJ, Lasheras JC, Chien S (2008) Anisotropic rheology and directional mechanotransduction in vascular endothelial cells. Proc Natl Acad Sci U S A 105(40):15411–15416CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Ming-Tzo Wei
    • 1
  • Olga Latinovic
    • 2
  • Lawrence A. Hough
    • 3
  • Yin-Quan Chen
    • 4
  • H. Daniel Ou-Yang
    • 1
    • 5
  • Arthur Chiou
    • 4
    • 6
  1. 1.Bioengineering ProgramLehigh UniversityBethlehemUSA
  2. 2.Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.Complex Assemblies of Soft Matter LabUMI 3254 CNRS/UPENN/RhodiaBristolUSA
  4. 4.Institute of BiophotonicsNational Yang-Ming UniversityTaipeiTaiwan
  5. 5.Department of PhysicsLehigh UniversityBethlehemUSA
  6. 6.Biophotonics and Molecular Imaging Research CenterNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations