SPR Biosensors

  • Aaron Ho-Pui Ho
  • Shu-Yuen Wu
  • Siu-Kai Kong
  • Shuwen Zeng
  • Ken-Tye Yong
Reference work entry


Surface plasmon resonance (SPR) refers to excited charge density oscillations that exist along the boundary between a metal and a dielectric with permittivities of opposite signs. When the orientation of the electric field vector of an incident light matches the movement of free electrons in the metal as restricted by the boundary conditions associated with some material and structural parameters, surface plasma waves (SPW) can be excited, and consequently efficient coupling with large energy as guided electromagnetic wave along the interface may occur. This phenomenon of unexpected attenuation was first discovered by Wood [1] in 1902 when they measured the reflection of metallic gratings and found that some optical power was absorbed by the metal because of the excitation of SPW. The focus on developing SPR sensing was inspired after the introduction of attenuated total internal reflection (ATR) by Otto [2] and Kretschmann [3] in 1968. It was not until 1983 that Liedberg and Nylander [4] reported the first practical sensing application of SPR for biomolecular detection. Since then, SPR biosensors have experienced rapid development in the last two decades and become a valuable platform for qualitative and quantitative measurements of biomolecular interactions with the advantages of high sensitivity, versatile target molecule selection, and real-time detection. For this reason, SPR sensors are now widely adopted for meeting the needs of biology, food quality and safety analysis, and medical diagnostics.


Surface Plasmon Resonance Infectious Bursal Disease Virus Surface Plasmon Resonance Sensor Zehnder Interferometer Surface Plasmon Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Hong Kong Research Grants Council under a group research project (Ref. # CUHK1/CRF/12G).


  1. 1.
    Wood RW (1902) XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos Mag Ser 6 4(21):396Google Scholar
  2. 2.
    Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik 216(4):398–410CrossRefGoogle Scholar
  3. 3.
    Kretschmann E, Raether HZ (1968) Radiative decay of non-radiative surface plasmons excited by light. Verlag der Zeitschrift für Naturforschung 23:2135–2136Google Scholar
  4. 4.
    Liedberg B, Nylander C, Lundstrum I (1983) Surface plasmon resonance for gas detection and biosensing. Sensor Actuator B 4:299–304CrossRefGoogle Scholar
  5. 5.
    Wu CM, Jian ZC, Joe SF, Chang LB (2003) High sensitivity sensor based on surface plasmon resonance and heterodyne interferometry. Sensor Actuator B 92(1–2):133–136CrossRefGoogle Scholar
  6. 6.
    Chiu MH, Wang SF, Chang RS (2005) D-type fiber biosensor based on surface plasmon resonance technology and heterodyne interferometry. Opt Lett 30(3):233–235CrossRefGoogle Scholar
  7. 7.
    Wang SF, Chiu MH, Chang RS (2006) Numerical simulation of a D-type optical fiber sensor based on the Kretchmann’s configuration and heterodyne interferometry. Sensor Actuator B 114(1):120–126CrossRefGoogle Scholar
  8. 8.
    Chiu MH, Shih CH (2008) Searching for optimal sensitivity of single-mode D-type optical fiber sensor in the phase measurement. Sensor Actuator B 131(2):596–601CrossRefGoogle Scholar
  9. 9.
    Wang SF (2009) U-shaped optical fiber sensor based on multiple total internal reflections in heterodyne interferometry. Opt Lasers Eng 47(10):1039–1043CrossRefGoogle Scholar
  10. 10.
    Li YC, Chang YF, Su LC, Chou C (2008) Differential-phase surface plasmon resonance biosensor. Anal Chem 80(14):5590–5595CrossRefGoogle Scholar
  11. 11.
    Kuo WC, Chou C, Wu HT (2003) Optical heterodyne surface-plasmon resonance biosensor. Opt Lett 28(15):1329–1331CrossRefGoogle Scholar
  12. 12.
    Chou C, Wu HT, Huang YC, Chen YL, Kuo WC (2006) Characteristics of a paired surface plasma waves biosensor. Opt Express 14(10):4307–4315CrossRefGoogle Scholar
  13. 13.
    Lee J-Y, Mai L-W, Hsu C-C, Sung Y-Y (2013) Enhanced sensitivity to surface plasmon resonance phase in wavelength-modulated heterodyne interferometry. Opt Commun 289:28–32CrossRefGoogle Scholar
  14. 14.
    Ho HP, Law WC, Wu SY, Liu XH, Wong SP, Lin C, Kong SK (2006) Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sensor Actuator B 114(1):80–84CrossRefGoogle Scholar
  15. 15.
    Peng HJ, Wong SP, Lai YW, Liu XH, Ho HP, Zhao S (2003) Simplified system based on photoelastic modulation technique for low-level birefringence measurement. Rev Sci Instrum 74(11):4745–4749CrossRefGoogle Scholar
  16. 16.
    Yuan W, Ho HP, Wu SY, Suen YK, Kong SK (2009) Polarization-sensitive surface plasmon enhanced ellipsometry biosensor using the photoelastic modulation technique. Sensor Actuator A 151(1):23–28CrossRefGoogle Scholar
  17. 17.
    Stewart CE, Hooper IR, Sambles JR (2008) Surface plasmon differential ellipsometry of aqueous solutions for bio-chemical sensing. J Phys D 41(10):105408–105415CrossRefGoogle Scholar
  18. 18.
    Hooper IR, Rooth M, Sambles JR (2009) Dual-channel differential surface plasmon ellipsometry for bio-chemical sensing. Biosens Bioelectron 25(2):411–417CrossRefGoogle Scholar
  19. 19.
    Markowicz PP, Law WC, Baev A, Prasad PN, Patskovsky S, Kabashin AV (2007) Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt Express 15(4):1745–1754CrossRefGoogle Scholar
  20. 20.
    Law WC, Markowicz P, Yong KT, Roy I, Baev A, Patskovsky S, Kabashin AV, Ho HP, Prasad PN (2007) Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics. Biosens Bioelectron 23(5):627–632CrossRefGoogle Scholar
  21. 21.
    Patskovsky S, Jacquemart R, Meunier M, de Crescenzo G, Kabashin AV (2008) Phase-sensitive spatially-modulated surface plasmon resonance polarimetry for detection of biomolecular interactions. Sensor Actuator B 133(2):628–631CrossRefGoogle Scholar
  22. 22.
    Patskovsky S, Maisonneuve M, Meunier M, Kabashin AV (2008) Mechanical modulation method for ultra-sensitive phase measurements in photonics biosensing. Opt Express 16(26):21305–21314CrossRefGoogle Scholar
  23. 23.
    Chiang HP, Lin JL, Chen ZW (2006) High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths. Appl Phys Lett 88(14), 141105CrossRefGoogle Scholar
  24. 24.
    Chiang HP, Lin JL, Chang R, Su SY, Leung PT (2005) High-resolution angular measurement using surface-plasmon- resonance via phase interrogation at optimal incident wavelengths. Opt Lett 30(20):2727–2729CrossRefGoogle Scholar
  25. 25.
    Zheng Z, Wan Y, Zhao X, Zhu J (2009) Spectral interferometric measurement of wavelength-dependent phase response for surface plasmon resonance sensors. Appl Optics 48(13):2491–2495CrossRefGoogle Scholar
  26. 26.
    Ng SP, Loo FC, Wu SY, Kong SK, Wu CML, Ho HP (2013) Common-path spectral interferometry with temporal carrier for highly sensitive surface plasmon resonance sensing. Opt Express 21(17):20268–20273CrossRefGoogle Scholar
  27. 27.
    Nikitina PI, Grigorenkoa AN, Beloglazova AA, Valeikoa MV, Savchukb AI, Savchukc OA, Steinerc G, Kuhnec C, Huebnerc A, Salzerc R (2000) Surface plasmon resonance interferometry for micro-array biosensing. Sensor Actuator A 85(1):189–193CrossRefGoogle Scholar
  28. 28.
    Homola J, Yee SS (1998) Novel polarization control scheme for spectral surface plasmon resonance sensors. Sensor Actuator B 51(1–3):331–339CrossRefGoogle Scholar
  29. 29.
    Steiner G, Sablinskas V, H¨ubner A, Kuhne C, Salzer R (1999) Surface plasmon resonance imaging of microstructured monolayers. J Mol Struct 509(1–3):265–273CrossRefGoogle Scholar
  30. 30.
    Piliarik M, Vaisocherová H, Homola J (2005) A new surface plasmon resonance sensor for high-throughput screening applications. Biosens Bioelectron 20(10):2104–2110CrossRefGoogle Scholar
  31. 31.
    Piliarik M, Vaisocherová H, Homola J (2007) Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensor Actuator B 121(1):187–193CrossRefGoogle Scholar
  32. 32.
    Su YD, Chen SJ, Yeh TL (2005) Common-path phase-shift interferometry surface plasmon resonance imaging system. Opt Lett 30(12):1488–1490CrossRefGoogle Scholar
  33. 33.
    Yu X, Ding X, Liu F, Deng Y (2008) A novel surface plasmon resonance imaging interferometry for protein array detection. Sensor Actuator B 130(1):52–58CrossRefGoogle Scholar
  34. 34.
    Kabashin AV, Nikitin PI (1997) Interferometer based on a surface plasmon resonance for sensor applications. Quantum Electron 27(7):653–654CrossRefGoogle Scholar
  35. 35.
    Kabashin AV, Nikitin PI (1998) Surface plasmon resonance interferometer for bio- and chemical-sensors. Opt Commun 150(1–6):5–8CrossRefGoogle Scholar
  36. 36.
    Notcovich AG, Zhuk V, Lipson SG (2000) Surface plasmon resonance phase imaging. Appl Phys Lett 76(13):1665–1667CrossRefGoogle Scholar
  37. 37.
    Ho HP, Lam WW, Wu SY (2002) Surface plasmon resonance sensor based on the measurement of differential phase. Rev Sci Instrum 73(10):3534–3539CrossRefGoogle Scholar
  38. 38.
    Ho HP, Lam WW (2003) Application of differential phase measurement technique to surface plasmon resonance sensors. Sensor Actuator B 96(3):554–559CrossRefGoogle Scholar
  39. 39.
    Wu SY, Ho HP, Law WC, Lin C (2004) Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration. Opt Lett 29(20):2378–2380CrossRefGoogle Scholar
  40. 40.
    Yuan W, Ho HP, Wong CL, Kong SK, Lin C (2007) Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity. IEEE Sensor J 7(1):70–73CrossRefGoogle Scholar
  41. 41.
    Ho HP, Yuan W, Wong CL, Wu SY, Suen YK, Kong SK, Lin C (2007) Sensitivity enhancement based on application of multi-pass interferometry in phase-sensitive surface plasmon resonance biosensor. Opt Commun 275(2):491–496CrossRefGoogle Scholar
  42. 42.
    Ng SP, Wu SY, Ho HP, Wu CML (2008) A white-light interferometric surface plasmon resonance sensor with wide dynamic range and phase-sensitive response. In: IEEE international conference on electron devices and solid-state circuits, HKSAR, Dec 2008Google Scholar
  43. 43.
    Ng SP, Wu CML, Wu SY, Ho HP (2011) White-light spectral interferometry for surface plasmon resonance sensing applications. Opt Express 19(5):4521–4527CrossRefGoogle Scholar
  44. 44.
    Thiel AJ, Frutos AG, Jordan CE, Corn RM, Smith LM (1997) In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal Chem 69(24):4948–4956CrossRefGoogle Scholar
  45. 45.
    Wegner GJ, Wark AW, Lee HJ, Codner E, Saeki T, Fang S, Corn RM (2004) Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal Chem 76(19):5677–5684CrossRefGoogle Scholar
  46. 46.
    Wark AW, Lee HJ, Corn RM (2005) Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 77(13):3904–3907CrossRefGoogle Scholar
  47. 47.
    Wong CL, Ho HP, Suen YK, Chen QL, Yuan W, Wu SY (2008) Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging. Biosensor Bioelectron 24(4):606–612CrossRefGoogle Scholar
  48. 48.
    Halpern AR, Chen Y, Corn RM, Kim D (2011) Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays. Anal Chem 83(7):2801–2806CrossRefGoogle Scholar
  49. 49.
    Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):867–871CrossRefGoogle Scholar
  50. 50.
    Law WC, Yong KT, Baev A, Prasad PN (2011) Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 5(6):4858–4864CrossRefGoogle Scholar
  51. 51.
    Kravets VG, Schedin F, Kabashin AV, Grigorenko AN (2010) Sensitivity of collective plasmon modes of gold nanoresonators to local environment. Opt Lett 35(7):956–958CrossRefGoogle Scholar
  52. 52.
    Zeng S, Yu X, Law WC, Zhang Y, Hu R, Dinh XQ, Ho HP, Yong KT (2013) Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensor Actuator B 176:1128–1133CrossRefGoogle Scholar
  53. 53.
    Oh Y, Lee W, Kim D (2011) Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas. Opt Lett 36(8):1353–1355CrossRefGoogle Scholar
  54. 54.
    Bai Y, Feng F, Wang C, Wang H, Tian M, Qin J, Duan Y, He X (2013) Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosensor Bioelectron 47:265–270CrossRefGoogle Scholar
  55. 55.
    Baccar H, Mejri MB, Hafaiedh I, Ktari T, Aouni M, Abdelghani A (2010) Surface plasmon resonance immunosensor for bacteria detection. Talanta 82(2):810–814CrossRefGoogle Scholar
  56. 56.
    Liu Y, Cheng Q (2012) Detection of membrane-binding proteins by surface plasmon resonance with an all-aqueous amplification scheme. Anal Chem 84(7):3179–3186CrossRefGoogle Scholar
  57. 57.
    Lyon LA, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70(24):5177–5183CrossRefGoogle Scholar
  58. 58.
    Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649CrossRefGoogle Scholar
  59. 59.
    Kyprianou D, Guerreiro AR, Nirschl M, Chianella I, Subrahmanyam S, Turner PF, Piletsky S (2010) The application of polythiol molecules for protein immobilisation on sensor surfaces. Biosens Bioelectron 25(5):1049–1055CrossRefGoogle Scholar
  60. 60.
    Altintas Z, Uludag Y, Gurbuz Y, Tothill I (2012) Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules. Anal Chim Acta 712:138–144CrossRefGoogle Scholar
  61. 61.
    Yatabe R, Onodera T, Toko K (2013) Fabrication of an SPR sensor surface with antifouling properties for highly sensitive detection of 2,4,6-Trinitrotoluene using surface-initiated atom transfer polymerization. Sensors 13(7):9294–9304CrossRefGoogle Scholar
  62. 62.
    Sipova H, Zhang S, Dudley AM, Galas D, Wang K, Homola J (2010) Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem 82(24):10110–10115CrossRefGoogle Scholar
  63. 63.
    Souto EP, Silva V, Martins R, Reis B, Luz CS, Kubota T, Damos S (2013) Development of a label-free immunosensor based on surface plasmon resonance technique for the detection of anti-Leishmania infantum antibodies in canine serum. Biosens Bioelectron 46:22–29CrossRefGoogle Scholar
  64. 64.
    Hu J, Li W, Wang T, Lin Z, Jiang M, Hu F (2012) Development of a label-free and innovative approach based on surface plasmon resonance biosensor for on-site detection of infectious bursal disease virus (IBDV). Biosens Bioelectron 31(1):475–479CrossRefGoogle Scholar
  65. 65.
    Ferguson J, Baxter A, Young P, Kennedy G, Elliott C, Weigel S, Gatermann R, Ashwin H, Stead S, Sharman M (2005) Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol. Anal Chim Acta 529(1–2):109–113CrossRefGoogle Scholar
  66. 66.
    Dudak FC, Boyac IH (2007) Development of an immunosensor based on surface plasmon resonance for enumeration of Escherichia coli in water samples. Food Res Int 40(7):803–807CrossRefGoogle Scholar
  67. 67.
    Spadavecchia J, Manera MG, Quaranta F, Siciliano P, Rella R (2005) Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosens Bioelectron 21(6):894–900CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Aaron Ho-Pui Ho
    • 1
  • Shu-Yuen Wu
    • 1
  • Siu-Kai Kong
    • 2
  • Shuwen Zeng
    • 3
  • Ken-Tye Yong
    • 3
  1. 1.Department of Electronic EngineeringThe Chinese University of Hong KongShatinHong Kong
  2. 2.School of Life SciencesThe Chinese University of Hong KongShatinHong Kong
  3. 3.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations