Skip to main content

SERS for Sensitive Biosensing and Imaging

  • Reference work entry
  • First Online:
  • 2272 Accesses

Abstract

Surface-enhanced Raman scattering spectroscopy or SERS has gained wide popularity over the past two decades in the field of biomedicine due to its unique analytical capability and ease of use. This chapter provides an account of the recent developments in SERS for selected biomedical applications. Label free and labeled detection with Raman reporter schemes have been employed to detect and identify various biomolecules such as nucleic acids, lipids, peptides, and proteins, as well as for in vivo and cellular sensing. A detailed account of various SERS biosensing strategies is reviewed with emphasis on the sensitivity and specificity by elaborating some recent examples of preclinical and clinical applications. Finally, a critical analysis of the technology is provided with regard to the challenges yet to be addressed and its future trend in biomedicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dou X, Yamaguchi Y, Yamamoto H, Doi S, Ozaki Y (1996) Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer. Vib Spectrosc 13:83–89

    Article  Google Scholar 

  2. Nijssen A, Bakker Schut TC, Heule F, Caspers PJ, Hayes DP, Neumann MH, Puppels GJ (2002) Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J Invest Dermatol 119:64–69

    Article  Google Scholar 

  3. Ko H, Singamaneni S, Tsukruk VV (2008) Nanostructured surfaces and assemblies as SERS media. Small 4(10):1576–1599

    Article  Google Scholar 

  4. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  5. Jeanmaire DL, Van Duyne RP (1977) Surface Raman electrochemistry Part I. heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84:1–20

    Article  Google Scholar 

  6. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  Google Scholar 

  7. Kambhampati P, Foster M, Campion A (1999) Two-dimensional localization of adsorbate/substrate charge-transfer excited states of molecules adsorbed on metal surfaces. J Chem Phys 110:551–558

    Article  Google Scholar 

  8. Schatz GC, Young MA, Van Duyne RP (2006) Electromagnetic mechanism of SERS. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface enhanced Raman scattering physics and applications, vol 103, Topics in applied physics. Springer, New York, pp 19–46

    Chapter  Google Scholar 

  9. Otto A (1984) In: Cardona M, Güntherodt G (eds) Light scattering in solids IV, vol 54. Springer, Berlin/Heidelberg, pp 289–418, Chapter 6

    Chapter  Google Scholar 

  10. Le Ru EC, Etchegoin PG (2009) Principles of surface-enhanced Raman spectroscopy. Elsevier, Amsterdam, pp 185–264

    Google Scholar 

  11. McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley, New York

    Book  Google Scholar 

  12. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou SL (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375

    Article  Google Scholar 

  13. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang X, Van Duyne RP (2006) Introductory lecture surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26

    Article  Google Scholar 

  14. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  Google Scholar 

  15. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 125:588–593

    Article  Google Scholar 

  16. Stuart DA, Yuen JM, Shah NC, Lyandres O, Yonzon CR, Glucksberg MR, Walsh JT, Van Duyne RP (2006) In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal Chem 78:7211–7215

    Article  Google Scholar 

  17. Ma K, Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Van Duyne RP (2011) In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal Chem 83:9146–9152

    Article  Google Scholar 

  18. Dinish US, Fu CY, Agarwal A, Olivo M (2011) Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing. Biosens Bioelectron 26:1987–1992

    Article  Google Scholar 

  19. Knauer M, Ivleva NP, Liu XJ, Niessner R, Haisch C (2010) Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms. Anal Chem 82:2766–2772

    Article  Google Scholar 

  20. Levin CS, Kundu J, Janesko BG, Scuseria GE, Raphael RM, Halas NJ (2008) Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies. J Phys Chem B 112:14168–14175

    Article  Google Scholar 

  21. Kundu J, Levin CS, Halas NJ (2009) Real-time monitoring of lipid transfer between vesicles and hybrid bilayers on Au nanoshells using surface enhanced Raman scattering (SERS). Nanoscale 1:114–117

    Article  Google Scholar 

  22. Bantz KC et al (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13:11551–11567

    Article  Google Scholar 

  23. Ock K et al (2012) Real-time monitoring of glutathione-triggered thiopurine anticancer drug release in live cells investigated by surface-enhanced Raman scattering. Anal Chem 84:2172–2178

    Article  Google Scholar 

  24. Huang GG, Han XX, Hossain MK, Ozaki Y (2009) Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions. Anal Chem 81:5881–5888

    Article  Google Scholar 

  25. Deckert-Gaudig T, Bailo E, Deckert V (2009) Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. Phys Chem Chem Phys 11:7360–7362

    Article  Google Scholar 

  26. Vitol EA, Brailoiu E, Orynbayeva Z, Dun NJ, Friedman G, Gogotsi Y (2010) Surface-enhanced Raman spectroscopy as a tool for detecting ca2+ mobilizing second messengers in cell extracts. Anal Chem 82:6770–6774

    Article  Google Scholar 

  27. Ren W, Fang YX, Wang EK (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano 5:6425–6433

    Article  Google Scholar 

  28. Kho KW, Dinish US, Kumar A, Olivo M (2012) Frequency shift in SERS for biosensing. ACS Nano 6:4892–4902

    Article  Google Scholar 

  29. Pal A, Isola NR, Alarie JP, Stokes DL, Vo-Dinh T (2006) Synthesis and characterization of SERS gene probe for BRCA-1 (breast cancer). Faraday Discuss 132:293–301

    Article  Google Scholar 

  30. Braun G, Lee SJ, Dante M, Nguyen TQ, Moskovits M, Reich N (2007) Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 129:6378–6379

    Article  Google Scholar 

  31. Banholzer MJ, Qin L, Millstone JE, Osberg KD, Mirkin CA (2009) On-wire lithography: synthesis, encoding and biological applications. Nat Protoc 4:838–848

    Article  Google Scholar 

  32. Bonham AJ, Braun G, Pavel I, Moskovits M, Reich NO (2007) Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. J Am Chem Soc 129:14572–14573

    Article  Google Scholar 

  33. Mahajan S, Richardson JA, Brown T, Bartlett PN (2008) SERS-melting: a new method for discriminating mutations in DNA sequences. J Am Chem Soc 130(46):15589–15601

    Article  Google Scholar 

  34. Jin R, Cao YC, Thaxton CS, Mirkin CA (2006) Glass-bead-based parallel detection of DNA using composite Raman labels. Small 2:375–380

    Article  Google Scholar 

  35. Faulds K, McKenzie F, Smith WE, Graham D (2007) Quantitative simultaneous multianalyte detection of DNA by dual-wavelength surface-enhanced resonance Raman scattering. Angew Chem Int Ed 46:1829–1831

    Article  Google Scholar 

  36. Wang GF et al (2011) Detection of the potential pancreatic cancer marker muc4 in serum using surface-enhanced Raman scattering. Anal Chem 83:2554–2561

    Article  Google Scholar 

  37. Hwang H, Chon H, Choo J, Park JK (2010) Optoelectrofluidic sandwich immunoassays for detection of human tumor marker using surface-enhanced Raman scattering. Anal Chem 82:7603–7610

    Article  Google Scholar 

  38. Qian X et al (2008) In vivo tumor targeting and spectroscopic detection with surface enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    Article  Google Scholar 

  39. Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci U S A 105:5844–5849

    Article  Google Scholar 

  40. Kustner B et al (2009) SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem Int Ed 48:1950–1953

    Article  Google Scholar 

  41. Maiti KK et al (2010) Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens Bioelectron 26:398–403

    Article  Google Scholar 

  42. Samanta A et al (2011) Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew Chem Int Ed 50:6089–6092

    Article  Google Scholar 

  43. Von Maltzahn G et al (2009) SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 21:3175–3180

    Article  Google Scholar 

  44. Lee S et al (2009) Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosens Bioelectron 24:2260–2263

    Article  Google Scholar 

  45. Huang PJ, Chau LK, Yang TS, Tay LL, Lin TT (2009) Nanoaggregate-embedded beads as novel Raman labels for biodetection. Adv Funct Mater 19:242–248

    Article  Google Scholar 

  46. Han XX, Zhao B, Ozaki Y (2009) Surface enhanced Raman scattering for protein detection. Anal Bioanal Chem 394:1719–1727

    Article  Google Scholar 

  47. Zhang Y, Hong H, Myklejord DV, Cai W (2011) Molecular imaging with SERS-active nanoparticles. Small 7:3261–3269

    Article  Google Scholar 

  48. Kong KV, Lam Z, Goh WD, Leong WK, Olivo M (2012) Metal carbonyl-gold nanoparticle conjugates for live-cell SERS imaging. Angew Chem Int Ed 51:9796–9799

    Article  Google Scholar 

  49. Wang X et al (2011) Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 71:526–1532

    Google Scholar 

  50. Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS (2011) Affibody-functionalized gold–silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small 7:625–633

    Article  Google Scholar 

  51. Dinish US, Fu CY, Soh KS, Ramaswamy B, Kumar A, Olivo M (2012) Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens Bioelectron 33:293–298

    Article  Google Scholar 

  52. Park H et al (2009) SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys 11:7444–7449

    Article  Google Scholar 

  53. Schlucker S, Kustner B, Punge A, Bonfig R, Marx A, Strobel P (2006) Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J Raman Spectrosc 37:719–721

    Article  Google Scholar 

  54. Jehn C, Kustner B, Adam P, Marx A, Strobel P, Schmuck C, Schlucker S (2009) Water soluble SERS labels comprising a SAM with dual spacers for controlled bioconjugation. Phys Chem Chem Phys 11:7499–7504

    Article  Google Scholar 

  55. Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) One-and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7:2819–2823

    Article  Google Scholar 

  56. Sha MY, Xu H, Nathan MJ, Cromer R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130:17214–17215

    Article  Google Scholar 

  57. Woo MA et al (2009) Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung. Anal Chem 81:1008–1015

    Article  Google Scholar 

  58. McQueenie R et al (2012) Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal Chem 84:5968–5975

    Article  Google Scholar 

  59. Matschulat A, Drescher D, Kneipp J (2010) Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 4:3259–3269

    Article  Google Scholar 

  60. Wu L et al (2013) Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique. Analyst 138:3450–3456

    Article  Google Scholar 

  61. Wang HN, Vo-Dinh T (2009) Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 20:065101 (1–6)

    Article  Google Scholar 

  62. Dinish US, Balasundaram G, Chang YT, Olivo M (2013) Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J Biophotonics 1–10. doi:10.1002/jbio.201300084

    Google Scholar 

  63. Zavaleta CL et al (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci U S A 106:13511–13516

    Article  Google Scholar 

  64. Maiti KK, Dinish US, Samanta A, Vendrell M, Soh KS, Park SJ, Olivo M, Chang YT (2012) Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7:85–93

    Article  Google Scholar 

  65. Wang Y, Seebald JL, Szeto DL, Irudayaraj J (2010) Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano 4:4039–4053

    Article  Google Scholar 

  66. Zavaleta CL et al (2013) A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci U S A 110:E2288–E2297

    Article  Google Scholar 

  67. Feng S, Lin J, Cheng M, Li YZ, Chen G, Huang Z, Yu Y, Chen R, Zeng H (2009) Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation. Appl Spectrosc 63:1089–1094

    Article  Google Scholar 

  68. Feng S, Chen R, Lin J, Pan J, Wu Y, Li Y, Chen J, Zeng H (2011) Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron 26:3167–3174

    Article  Google Scholar 

  69. Aydin O, Altaş M, Kahraman M, Bayrak OF, Çulha M (2009) Differentiation of healthy brain tissue and tumors using Surface-enhanced Raman scattering. Appl Spectrosc 63:1095–1100

    Article  Google Scholar 

  70. Wang H, Malvadkar N, Koytek S, Bylander J, Reeves WB, Demirel MC (2010) Quantitative analysis of creatinine in urine by metalized nanostructured parylene. J Biomed Opt 15:027004

    Article  Google Scholar 

  71. Kong KV, Dinish US, Lau WK, Olivo M (2014) Sensitive SERS-ph sensing in biological media using metal carbonyl functionalized planar substrates. Biosens Bioelectron 54:135–140

    Article  Google Scholar 

  72. Kang H et al (2013) Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv Funct Mater 23:3719–3727

    Article  Google Scholar 

  73. Xie W, Schlucker S (2013) Medical applications of surface enhanced Raman scattering. Phys Chem Chem Phys 15:5329–5344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U. S. Dinish or Malini Olivo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Dinish, U.S., Olivo, M. (2017). SERS for Sensitive Biosensing and Imaging. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_24

Download citation

Publish with us

Policies and ethics